Your browser doesn't support javascript.
loading
Effect of thermal characteristics on the chemical quality of real-brine treatment through hydrophilic fiber-based low-grade heat-powered humidification-dehumidification process.
Santosh, Ravichandran; Lee, Ho-Saeng; Ji, Ho; Kim, Young-Deuk.
Afiliação
  • Santosh R; Energy & Environmental Engineering Laboratory, Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea; ERICA Industry-University Cooperation Foundation, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gye
  • Lee HS; Seawater Utilization Plant Research Center (SUPRC), Korea Research Institute of Ships & Ocean Engineering, 124-32 Simcheungsu-gil, Jukwang-myeon, Goseong-gun, Gangwon-do 219-822, Republic of Korea.
  • Ji H; Seawater Utilization Plant Research Center (SUPRC), Korea Research Institute of Ships & Ocean Engineering, 124-32 Simcheungsu-gil, Jukwang-myeon, Goseong-gun, Gangwon-do 219-822, Republic of Korea.
  • Kim YD; BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea; Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea. Electronic address: kyd16@hanmail.net.
Water Res ; 233: 119771, 2023 Apr 15.
Article em En | MEDLINE | ID: mdl-36842328
ABSTRACT
Considering the increasing demand for desalination plants and their byproduct brine, this study investigated a humidification-dehumidification (HDH) system for treating membrane distillation-generated real high-salinity brine using low-grade heat (45-70 ℃) to explore its feasibility for sustainable energy-efficient minimal liquid discharge. A novel super-hydrophilic fabric was adopted for accelerated humidification, and its impact on brine droplet miscarriage characteristics was evaluated. The influence of the operating fluid thermal properties (cycle 1 air preheating; cycle 2 air and brine dual-fluid preheating; and cycle 3 air post-heating after humidification) on the brine treatment efficiency, energy consumption, and chemical quality of freshwater produced was analyzed in detail to establish their characteristic nexus. It was identified that, during humidification, increasing the brine temperature (up to 55 ℃) influenced its ionic mobility, thereby promoting efficient separation of the salts/minerals and contributing to achieving better freshwater quality. Furthermore, although cycle 3 exhibited improved system thermal efficiency (gained output ratio equal to 1.77), its non-preheated air contributed to a negative effect of the reduced humidity ratio (∼17 g/kg), leading to a lower freshwater productivity of 67% than that of cycle 2 (29 g/kg and 70%). The present study also illustrates a novel effect of evaporative deposition occurring due to air-water interaction on the fabric humidifier surface, with an exploration of its effect on reducing freshwater chemical quality. The freshwater generated from optimum thermal cycle 2 exhibited reduced pH (by ∼63%), sodium (99.9%), chloride (99.9%), toxic boron (99.7%), and other chemical contaminants, thereby satisfying the major international water reuse standards.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sais / Purificação da Água Tipo de estudo: Guideline / Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sais / Purificação da Água Tipo de estudo: Guideline / Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article