Your browser doesn't support javascript.
loading
Computational fluid dynamics model of laryngotracheal stenosis and correlation to pulmonary function measures.
Crosby, Tyler; Adkins, Lacey; McWhorter, Andrew; Kunduk, Melda; Dunham, Michael.
Afiliação
  • Crosby T; Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Department of Otolaryngology-Head and Neck Surgery, NYU Langone Health, New York, New York. Electronic address: crosbytw@gma
  • Adkins L; Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA.
  • McWhorter A; Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA.
  • Kunduk M; Our Lady of the Lake Regional Medical Center, Voice Center, 4950 Essen Ln Ste 401, Baton Rouge, LA 70809, USA; Louisiana State University Department of Communication Sciences and Disorders, Louisiana State University, 68 Hatcher Hall, Field House Drive, Baton Rouge, LA 70803, USA.
  • Dunham M; Louisiana State University Health Science Center, New Orleans - Department of Otolaryngology, Head and Neck Surgery, 533 Bolivar Street, Suite 566, New Orleans, LA 70112, USA; Our Lady of the Lake Children's Hospital, 8200 Constanin Blvd, Floor 3, Baton Rouge, LA 70809, USA.
Respir Physiol Neurobiol ; 312: 104037, 2023 06.
Article em En | MEDLINE | ID: mdl-36842729
3D models of airway lumens were created from CT scans of 19 patients with laryngotracheal stenosis. Computational fluid dynamics (CFD) simulations were completed for each, and results were compared to measured peak inspiratory flow rate, grade of lumen constriction, and measures of airway geometry. Results demonstrate flow resistance and shear stress correlate with degree of lumen constriction and absolute cross-sectional area as well as flow rate. Flow recirculation depends on airway constriction but does not vary with flow rate. Resistance and wall shear stress did not correlate well with functional measures. Flow recirculation did differ between subjects with higher functional measures and subjects with lower functional measures. This analysis provides mathematical models to predict airway resistance, wall shear stress, and flow reversal according lumen constriction and inspiratory flow rate. It suggests aerodynamic factors such as flow recirculation play a role in differences in functional performance between patients with similar airway measures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Laringoestenose / Hidrodinâmica Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Laringoestenose / Hidrodinâmica Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article