Your browser doesn't support javascript.
loading
Dynamic flexibility and controllability of network communities in juvenile myoclonic epilepsy.
Vataman, Anatolie; Ciolac, Dumitru; Chiosa, Vitalie; Aftene, Daniela; Leahu, Pavel; Winter, Yaroslav; Groppa, Stanislav A; Gonzalez-Escamilla, Gabriel; Muthuraman, Muthuraman; Groppa, Sergiu.
Afiliação
  • Vataman A; Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine
  • Ciolac D; Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine
  • Chiosa V; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia.
  • Aftene D; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia.
  • Leahu P; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia.
  • Winter Y; Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, Johannes Gutenberg University Mainz, Mainz, Germany.
  • Groppa SA; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia.
  • Gonzalez-Escamilla G; Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
  • Muthuraman M; Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
  • Groppa S; Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address: segroppa@uni-mainz.de.
Neurobiol Dis ; 179: 106055, 2023 04.
Article em En | MEDLINE | ID: mdl-36849015
Juvenile myoclonic epilepsy (JME) is the most common syndrome within the idiopathic generalized epilepsy spectrum, manifested by myoclonic and generalized tonic-clonic seizures and spike-and-wave discharges (SWDs) on electroencephalography (EEG). Currently, the pathophysiological concepts addressing SWD generation in JME are still incomplete. In this work, we characterize the temporal and spatial organization of functional networks and their dynamic properties as derived from high-density EEG (hdEEG) recordings and MRI in 40 JME patients (25.4 ± 7.6 years, 25 females). The adopted approach allows for the construction of a precise dynamic model of ictal transformation in JME at the cortical and deep brain nuclei source levels. We implement Louvain algorithm to attribute brain regions with similar topological properties to modules during separate time windows before and during SWD generation. Afterwards, we quantify how modular assignments evolve and steer through different states towards the ictal state by measuring characteristics of flexibility and controllability. We find antagonistic dynamics of flexibility and controllability within network modules as they evolve towards and undergo ictal transformation. Prior to SWD generation, we observe concomitantly increasing flexibility (F(1,39) = 25.3, corrected p < 0.001) and decreasing controllability (F(1,39) = 55.3, p < 0.001) within the fronto-parietal module in γ-band. On a step further, during interictal SWDs as compared to preceding time windows, we notice decreasing flexibility (F(1,39) = 11.9, p < 0.001) and increasing controllability (F(1,39) = 10.1, p < 0.001) within the fronto-temporal module in γ-band. During ictal SWDs as compared to prior time windows, we demonstrate significantly decreasing flexibility (F(1,14) = 31.6; p < 0.001) and increasing controllability (F(1,14) = 44.7, p < 0.001) within the basal ganglia module. Furthermore, we show that flexibility and controllability within the fronto-temporal module of the interictal SWDs relate to seizure frequency and cognitive performance in JME patients. Our results demonstrate that detection of network modules and quantification of their dynamic properties is relevant to track the generation of SWDs. The observed flexibility and controllability dynamics reflect the reorganization of de-/synchronized connections and the ability of evolving network modules to reach a seizure-free state, respectively. These findings may advance the elaboration of network-based biomarkers and more targeted therapeutic neuromodulatory approaches in JME.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Epilepsia Mioclônica Juvenil Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Epilepsia Mioclônica Juvenil Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article