Fast carrier diffusion via synergistic effects between lithium-ions and polarons in rutile TiO2.
Phys Chem Chem Phys
; 25(10): 7519-7526, 2023 Mar 08.
Article
em En
| MEDLINE
| ID: mdl-36853620
Carrier mobility in titanium dioxide (TiO2) systems is a key factor for their application as energy materials, especially in solar cells and lithium-ion batteries. Studies on the diffusion of Li-ions and polarons in rutile TiO2 systems have attracted extensive attention. However, how their interaction affects the diffusion of Li-ions and electron polarons is largely unclear and related studies are relatively lacking. By using first-principles calculations, we systematically investigate the interaction between the intercalated Li-ions and electron polarons in rutile TiO2 materials. Our analysis shows that the diffusion barrier of the electron polarons decreases around the Li-ion. The interaction between the Li-ions and polarons would benefit their synergistic diffusion both in the pristine and defective rutile TiO2 systems. Our study reveals the synergistic effects between the ions and polarons, which is important for understanding the carrier properties in TiO2 systems and in further improving the performance of energy materials.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article