Transplantation of Human Placenta Derived Mitochondria Promotes Cell Communication in Endometrium in a Murine Model of Disturbed Endometrium.
Stem Cell Rev Rep
; 19(5): 1384-1401, 2023 07.
Article
em En
| MEDLINE
| ID: mdl-36856954
OBJECTIVES: Herein, we investigated the regenerative potential of functional mitochondria to restore endometrial injury. METHODS: The endometrium was disturbed with an intrauterine injection of 95% ethanol. Regeneration of the disturbed endometrium was achieved by transplantation of human placenta derived mitochondria followed by thrombin activated platelet rich plasma (hMTx). The transplantation method provided a biomimetic gel layer that stabilized and supported the functionality of the transplanted mitochondria to flourish regeneration of the disturbed endometrium. The presence of engrafted Rhodamine B labelled mitochondria was quantified at 12, 24, 48, and 72 h after transplantation. RESULTS: Detection of human-specific mitochondria mRNA in recipient rat uterus showed significant up-regulation of MT ATP-8, MT COX-1, MT COX -3, MT COX -2, MT ATP-6 (p = 0.009) in the hMTx treated group compared to the disturbed endometrium group. The hMTx group demonstrated showed regeneration through increased expressions of α-SMA, CK-18, CK-19, Connexin-40, E Cadherin, Claudin-1, Zona Occludin as compared with disturbed endometrium group. Experimental hMTx endometrial cells had significantly higher values of activities of NADH, NADPH, Cytochrome B5, Cytochrome P450, Complex I, Complex II, Complex III, Complex IV compared with disturbed endometrium indicating the regeneration of damaged endometrial cells at 72 h. CONCLUSIONS: Intrauterine hMTx was accounted to improve endometrial junction protein thus regeneration in the disturbed endometrium. Our Data provide the first evidence that hMTx promotes endometrial regeneration in the disturbed endometrium, paving the way for the development of a novel approach to human endometrial regeneration.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Comunicação Celular
/
Endométrio
Limite:
Animals
/
Female
/
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article