Your browser doesn't support javascript.
loading
Boosting Hydrostability and Carbon Dioxide Capture of Boroxine-Linked Covalent Organic Frameworks by One-Pot Oligoamine Modification.
Jia, Chao; Liang, Rong-Ran; Gan, Shi-Xian; Jiang, Shu-Yan; Qi, Qiao-Yan; Zhao, Xin.
Afiliação
  • Jia C; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
  • Liang RR; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
  • Gan SX; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
  • Jiang SY; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
  • Qi QY; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
  • Zhao X; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
Chemistry ; 29(29): e202300186, 2023 May 22.
Article em En | MEDLINE | ID: mdl-36859630
Boron-based covalent organic frameworks (COFs) are susceptible to nucleophilic attack by water at the electron-deficient boron sites and even slightly humid air could destroy the integrity of their porous frameworks within hours. Such instability is a major limitation to the practical applications of boron-based COFs. Herein we report a significant enhancement of hydrostability of boroxine-linked COFs (COF-1 as representative) by modification with an oligoamine (tetraethylenepentamine, TEPA), which leads to survival of the modified COF in water and long-time stability under humid atmosphere. Meanwhile, the TEPA modification also results in a considerable increase in CO2 adsorption capacity up to 13 times and a dramatic improvement in CO2 /N2 selectivity in low pressure region, which make the modified COF suitable for capturing CO2 from flue gas. This work provides a facile, efficient, and scalable method to greatly improve hydrostability of boroxine-linked COFs and reshape them into high-performance CO2 adsorbents.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article