Boosting Hydrostability and Carbon Dioxide Capture of Boroxine-Linked Covalent Organic Frameworks by One-Pot Oligoamine Modification.
Chemistry
; 29(29): e202300186, 2023 May 22.
Article
em En
| MEDLINE
| ID: mdl-36859630
Boron-based covalent organic frameworks (COFs) are susceptible to nucleophilic attack by water at the electron-deficient boron sites and even slightly humid air could destroy the integrity of their porous frameworks within hours. Such instability is a major limitation to the practical applications of boron-based COFs. Herein we report a significant enhancement of hydrostability of boroxine-linked COFs (COF-1 as representative) by modification with an oligoamine (tetraethylenepentamine, TEPA), which leads to survival of the modified COF in water and long-time stability under humid atmosphere. Meanwhile, the TEPA modification also results in a considerable increase in CO2 adsorption capacity up to 13â
times and a dramatic improvement in CO2 /N2 selectivity in low pressure region, which make the modified COF suitable for capturing CO2 from flue gas. This work provides a facile, efficient, and scalable method to greatly improve hydrostability of boroxine-linked COFs and reshape them into high-performance CO2 adsorbents.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article