Your browser doesn't support javascript.
loading
Synthesis and evaluation of ginsenosides imprinted polymer-based chromatographic stationary phase.
Xue, Junping; Zhang, Jingxiu; Yu, Cuichi; Arabi, Maryam; Li, Jinhua; Li, Guisheng; Yang, Gangqiang; Chen, Lingxin; Song, Zhihua.
Afiliação
  • Xue J; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China.
  • Zhang J; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China.
  • Yu C; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China.
  • Arabi M; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China.
  • Li J; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China.
  • Li G; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China.
  • Yang G; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China.
  • Chen L; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China.
  • Song Z; School of Pharmacy, Binzhou Medical University, Yantai, P. R. China.
J Sep Sci ; 46(10): e2200825, 2023 May.
Article em En | MEDLINE | ID: mdl-36892410
ABSTRACT
The molecular imprinting technique has aroused great interest in preparing novel stationary phases, and the resulting materials named molecularly imprinted polymers coated silica packing materials exhibit good performance in separating diverse analytes based on their good characteristics (including high selectivity, simple synthesis, and good chemical stability). To date, mono-template is commonly used in synthesizing molecularly imprinted polymers-based stationary phases. The resulting materials always own the disadvantages of low column efficiency and restricted analytes, and the price of ginsenosides with high purity was very high. In this study, to overcome the weaknesses of molecularly imprinted polymers-based stationary phases mentioned above, the multi-templates (total saponins of folium ginseng) strategy was used to prepare ginsenosides imprinted polymer-based stationary phase. The resulting ginsenosides imprinted polymer-coated silica stationary phase has a good spherical shape and suitable pore structures. Additionally, the total saponins of folium ginseng were cheaper than other kinds of ginsenosides. Moreover, the ginsenosides imprinted polymer-coated silica stationary phase-packed column performed well in the separation of ginsenosides, nucleosides, and sulfonamides. The ginsenosides imprinted polymer-coated silica stationary phase possesses good reproducibility, repeatability, and stability for seven days. Therefore, a multi-templates strategy for synthesizing the ginsenosides imprinted polymer-coated silica stationary phase is considered in the future.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saponinas / Ginsenosídeos Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saponinas / Ginsenosídeos Idioma: En Ano de publicação: 2023 Tipo de documento: Article