Your browser doesn't support javascript.
loading
Proteomics and metabolomics profiling reveal panels of circulating diagnostic biomarkers and molecular subtypes in stable COPD.
Zhang, Zili; Wang, Jian; Li, Yuanyuan; Liu, Fei; Chen, Lingdan; He, Shunping; Lin, Fanjie; Wei, Xinguang; Fang, Yaowei; Li, Qiongqiong; Zhou, Juntuo; Lu, Wenju.
Afiliação
  • Zhang Z; State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Wang J; State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Li Y; Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China.
  • Liu F; State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Chen L; Department of Respiratory and Critical Care, Shaoguan First People's Hospital, Shaoguan, Guangdong, China.
  • He S; State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Lin F; Department of Respiratory and Critical Care, Shaoguan First People's Hospital, Shaoguan, Guangdong, China.
  • Wei X; State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Fang Y; State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Li Q; State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Zhou J; State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
  • Lu W; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100083, China.
Respir Res ; 24(1): 73, 2023 Mar 11.
Article em En | MEDLINE | ID: mdl-36899372
ABSTRACT

BACKGROUND:

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease with high morbidity and mortality, especially in advanced patients. We aimed to develop multi-omics panels of biomarkers for the diagnosis and explore its molecular subtypes.

METHODS:

A total of 40 stable patients with advanced COPD and 40 controls were enrolled in the study. Proteomics and metabolomics techniques were applied to identify potential biomarkers. An additional 29 COPD and 31 controls were enrolled for validation of the obtained proteomic signatures. Information on demographic, clinical manifestation, and blood test were collected. The ROC analyses were carried out to evaluate the diagnostic performance, and experimentally validated the final biomarkers on mild-to-moderate COPD. Next, molecular subtyping was performed using proteomics data.

RESULTS:

Theophylline, palmitoylethanolamide, hypoxanthine, and cadherin 5 (CDH5) could effectively diagnose advanced COPD with high accuracy (auROC = 0.98, sensitivity of 0.94, and specificity of 0.95). The performance of the diagnostic panel was superior to that of other single/combined results and blood tests. Proteome based stratification of COPD revealed three subtypes (I-III) related to different clinical outcomes and molecular feature simplex COPD, COPD co-existing with bronchiectasis, and COPD largely co-existing with metabolic syndrome, respectively. Two discriminant models were established using the auROC of 0.96 (Principal Component Analysis, PCA) and 0.95 (the combination of RRM1 + SUPV3L1 + KRT78) in differentiating COPD and COPD with co-morbidities. Theophylline and CDH5 were exclusively elevated in advanced COPD but not in its mild form.

CONCLUSIONS:

This integrative multi-omics analysis provides a more comprehensive understanding of the molecular landscape of advanced COPD, which may suggest molecular targets for specialized therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença Pulmonar Obstrutiva Crônica / Proteômica Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença Pulmonar Obstrutiva Crônica / Proteômica Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article