Your browser doesn't support javascript.
loading
Predicting motor behavior: an efficient EEG signal processing pipeline to detect brain states with potential therapeutic relevance for VR-based neurorehabilitation.
McDermott, Eric J; Metsomaa, Johanna; Belardinelli, Paolo; Grosse-Wentrup, Moritz; Ziemann, Ulf; Zrenner, Christoph.
Afiliação
  • McDermott EJ; Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
  • Metsomaa J; Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany.
  • Belardinelli P; International Max Planck Research School, and Graduate Training Center of Neuroscience, Tübingen, Germany.
  • Grosse-Wentrup M; Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
  • Ziemann U; Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany.
  • Zrenner C; Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
Virtual Real ; 27(1): 347-369, 2023.
Article em En | MEDLINE | ID: mdl-36915631
ABSTRACT
Virtual reality (VR)-based motor therapy is an emerging approach in neurorehabilitation. The combination of VR with electroencephalography (EEG) presents further opportunities to improve therapeutic efficacy by personalizing the paradigm. Specifically, the idea is to synchronize the choice and timing of stimuli in the perceived virtual world with fluctuating brain states relevant to motor behavior. Here, we present an open source EEG single-trial based classification pipeline that is designed to identify ongoing brain states predictive of the planning and execution of movements. 9 healthy volunteers each performed 1080 trials of a repetitive reaching task with an implicit two-alternative forced choice, i.e., use of the right or left hand, in response to the appearance of a visual target. The performance of the EEG decoding pipeline was assessed with respect to classification accuracy of right vs. left arm use, based on the EEG signal at the time of the stimulus. Different features, feature extraction methods, and classifiers were compared at different time windows; the number and location of informative EEG channels and the number of calibration trials needed were also quantified, as well as any benefits from individual-level optimization of pipeline parameters. This resulted in a set of recommended parameters that achieved an average 83.3% correct prediction on never-before-seen testing data, and a state-of-the-art 77.1% in a real-time simulation. Neurophysiological plausibility of the resulting classifiers was assessed by time-frequency and event-related potential analyses, as well as by Independent Component Analysis topographies and cortical source localization. We expect that this pipeline will facilitate the identification of relevant brain states as prospective therapeutic targets in closed-loop EEG-VR motor neurorehabilitation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article