Flexible aqueous supercapacitors with excellent cycling performance and high-energy density based on mesocrystalline NiCo-LDHs.
Phys Chem Chem Phys
; 25(13): 9104-9114, 2023 Mar 29.
Article
em En
| MEDLINE
| ID: mdl-36928112
Flexible aqueous supercapacitors are promising candidates as safe power sources for wearable electronic devices (WEDs). However, the absence of advanced electrode materials with high structural stability has become the most critical factor hindering the development, which is closely related to the poor interface combination between the active substances and flexible collectors. Herein, a unique rigid layered double hydroxide (LDH) nanorod array with the mesocrystalline feature is created using the NiO-Ni layer as the inducer by the electrodeposition strategy. Differing from the traditional NiCo-LDH nanosheets directly grown on a carbon cloth, an elaborately designed NiO-Ni buffer can simultaneously and effectively improve the bidirectional combination with active substances and collectors, also the mesocrystalline LDH showed enhanced intrinsic stability through the reinforcing effect of grain boundaries. Benefiting from these, the assembled supercapacitor exhibited pre-eminent cycle stability (increased from 64% of the initial capacity after 10 000 cycles to no significant attenuation after 50 000 cycles) and ultrahigh energy density. When it was used as a flexible device, a remarkable energy density of 70.4 W h kg-1 could be harvested and processed with high flexibility in the bending state and good temperature adaptability. This study provides an excellent design strategy for the development of next-generation flexible supercapacitors with the goal of better comprehensive performances.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article