Your browser doesn't support javascript.
loading
Combination of epigenetic erasing and mechanical cues to generate human epiBlastoids from adult dermal fibroblasts.
Pennarossa, Georgia; Arcuri, Sharon; De Iorio, Teresina; Ledda, Sergio; Gandolfi, Fulvio; Brevini, Tiziana A L.
Afiliação
  • Pennarossa G; Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy.
  • Arcuri S; Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy.
  • De Iorio T; Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy.
  • Ledda S; Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
  • Gandolfi F; Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133, Milan, Italy.
  • Brevini TAL; Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy. tiziana.brevini@unimi.it.
J Assist Reprod Genet ; 40(5): 1015-1027, 2023 May.
Article em En | MEDLINE | ID: mdl-36933093
PURPOSE: This study is to develop a new protocol that combines the use of epigenetic cues and mechanical stimuli to assemble 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. METHODS: A 3-step approach is used to generate epiBlastoids. In the first step, adult dermal fibroblasts are converted into trophoblast (TR)-like cells, combining the use of 5-azacytidine, to erase the original phenotype, with an ad hoc induction protocol, to drive cells towards TR lineage. In the second step, epigenetic erasing is applied once again, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like organoids. Specifically, erased cells are encapsulated into micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, TR-like cells are co-cultured with ICM-like spheroids in the same micro-bioreactors. Subsequently, the newly generated embryoids are transferred to microwells to favor epiBlastoid formation. RESULTS: Adult dermal fibroblasts are successfully readdressed towards TR lineage. Cells subjected to epigenetic erasing and encapsulated into micro-bioreactors rearrange in 3D ICM-like structures. Co-culture of TR-like cells and ICM-like spheroids into micro-bioreactors and microwells induces the formation of single structures with uniform shape reminiscent in vivo embryos. CDX2+ cells localized in the out layer of the spheroids, while OCT4+ cells in the inner of the structures. TROP2+ cells display YAP nuclear accumulation and actively transcribed for mature TR markers, while TROP2- cells showed YAP cytoplasmic compartmentalization and expressed pluripotency-related genes. CONCLUSION: We describe the generation of epiBlastoids that may find useful application in the assisted reproduction field.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Blastocisto / Sinais (Psicologia) Limite: Adult / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Blastocisto / Sinais (Psicologia) Limite: Adult / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article