Your browser doesn't support javascript.
loading
Differential expression of outer membrane proteins and quinolone resistance determining region mutations can lead to ciprofloxacin resistance in Salmonella Typhi.
Akshay, Sadanand Dangari; Nayak, Srajana; Deekshit, Vijaya Kumar; Rohit, Anusha; Maiti, Biswajit.
Afiliação
  • Akshay SD; Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
  • Nayak S; Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
  • Deekshit VK; Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
  • Rohit A; Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
  • Maiti B; Department of Microbiology, The Madras Medical Mission, 4-A, Dr, Mogappair, Chennai, Tamil Nadu, 600037, India.
Arch Microbiol ; 205(4): 136, 2023 Mar 24.
Article em En | MEDLINE | ID: mdl-36961627
Multi-drug resistance in Salmonella Typhi remains a public health concern globally. This study aimed to investigate the function of quinolone resistance determining region (QRDR) of gyrA and parC in ciprofloxacin (CIP) resistant isolates and examine the differential expression of outer membrane proteins (OMPs) on exposure to sub-lethal concentrations of CIP in S. Typhi. The CIP-resistant isolates were screened for mutations in the QRDR and analyzed for bacterial growth. Furthermore, major OMPs encoding genes such as ompF, lamB, yaeT, tolC, ompS1, and phoE were examined for differential expression under the sub-lethal concentrations of CIP by real-time PCR and SDS-PAGE. Notably, our study has shown a single-point mutation in gyrA at codon 83 (Ser83-tyrosine and Ser83-phenylalanine), also the rare amino acid substitution in parC gene at codon 80 (Glu80-glycine) in CIP-resistant isolates. Additionally, CIP-resistant isolates showed moderate growth compared to susceptible isolates. Although most of the OMP-encoding genes (tolC, ompS1, and phoE) showed some degree of upregulation, a significant level of upregulation (p < 0.05) was observed only for yaeT. However, ompF and lamB genes were down-regulated compared to CIP-susceptible isolates. Whereas OMPs profiling using SDS-PAGE did not show any changes in the banding pattern. These results provide valuable information on the QRDR mutation, and the difference in the growth, and expression of OMP-encoding genes in resistant and susceptible isolates of S. Typhi. This further provides insight into the involvement of QRDR mutation and OMPs associated with CIP resistance in S. Typhi.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ciprofloxacina / Quinolonas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ciprofloxacina / Quinolonas Idioma: En Ano de publicação: 2023 Tipo de documento: Article