Your browser doesn't support javascript.
loading
Physiological and transcriptomic responses to magnesium deficiency in Neolamarckia Cadamba.
Wang, Yueyang; Zhang, Xintong; Zhang, Wenjuan; Peng, Mengxuan; Tan, Guoqing; Qaseem, Mirza Faisal; Li, Huiling; Wu, Ai-Min.
Afiliação
  • Wang Y; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
  • Zhang X; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
  • Zhang W; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
  • Peng M; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
  • Tan G; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
  • Qaseem MF; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
  • Li H; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China. Electr
  • Wu AM; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangd
Plant Physiol Biochem ; 197: 107645, 2023 Apr.
Article em En | MEDLINE | ID: mdl-36963300
ABSTRACT
Magnesium (Mg2+) is a critical component of chlorophyll and enzymes involved in various physiological and biochemical processes essential for plant growth, biomass accumulation, and photosynthesis. Mg2+ deficiency (MgD) is common in hot and rainy subtropical areas due to its easy loss from soil. Neolamarckia cadamba, an important tropical tree in South Asia, faces severe effects of MgD, however, the responses of N. cadamba to MgD stress remain unclear. In here, effects of N. cadamba under MgD stress were investigated. The study revealed that MgD had lower plant biomass, fresh and dry weight, root length, root volume, and surface area compared to CK (normal Mg2+). As treatment time increased, the leaves began to yellow, and lesions appeared. Chlorophyll a, chlorophyll b, and total chlorophyll content, along with fluorescence-related parameters and leaf photosynthetic capacity, were significantly reduced in MgD stress compared to CK treatment. Transcriptome analysis showed that transporters as well as transcription factors (TFs) from MYC (v-myc avian myelocytomatosis viral oncogene homolog), MYB (v-myb avian myeloblastosis viral oncogene homolog), bHLH (basic helix-loop-helix) and WRKY families were upregulated in leaves at 10 d of MgD stress, indicating that magnesium signaling transduction might be activated to compensate MgD. In addition, genes including chlorophyll(ide) b reductase (NYC1/NOL) chlorophyll/bacteriochlorophyll synthase (G4) and 7-hydroxymethyl chlorophyll a reductase synthesizing (HCAR) chlorophyll a and chlorophyll b were down-regulated in leaves, while those scavenging reactive oxygen species (ROS) were mainly up-regulated at 10 d of MgD stress. These results shed light on underlying MgD in N. cadamba.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transcriptoma / Deficiência de Magnésio Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transcriptoma / Deficiência de Magnésio Idioma: En Ano de publicação: 2023 Tipo de documento: Article