Your browser doesn't support javascript.
loading
Discovery of YH677 as a cancer stemness inhibitor that suppresses triple-negative breast cancer growth and metastasis by regulating the TGFß signaling pathway.
Zhang, Yuzhu; Chen, Jing; Mi, Dazhao; Ling, Jun; Li, Huachao; He, Peng; Liu, Ning; Chen, Qianjun; Chen, Yihua; Huang, Luqi.
Afiliação
  • Zhang Y; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
  • Chen J; School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China.
  • Mi D; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Ling J; School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China.
  • Li H; Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
  • He P; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Liu N; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Chen Q; Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China. Electronic address: cqj55@163.com.
  • Chen Y; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China. Electronic address: yhchen@bio.ecnu.edu.cn.
  • Huang L; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. Electronic address: huangluqi01@126.com.
Cancer Lett ; 560: 216142, 2023 04 28.
Article em En | MEDLINE | ID: mdl-36965539
ABSTRACT
Triple-negative breast cancer (TNBC) has a poor prognosis due to the lack of specific and highly effective therapeutic agents. Cancer stem cells (CSCs) are one of the main factors contributing to TNBC relapse and metastasis. Therefore, targeting CSCs selectively with small molecules is a novel strategy for drug development. In this study, the natural product harmine (HM) was identified as a hit compound from 2632 natural product monomers based on phenotypic screening of a 2D assay and patient-derived organoid (PDO) model that was established from a patient who had multiple drug resistance and various visceral and contralateral breast metastases. Next, harmine was further modified and optimized to obtain a lead compound (YH677) with a tetrahydro-ß-carboline scaffold. YH677 showed potent antiproliferative and antimigratory activities against several TNBC cell lines in vitro. In addition, YH677 inhibited epithelial mesenchymal transition (EMT) and stem cell marker expression in a dose-dependent manner. More importantly, YH677 suppressed breast cancer growth and metastasis in orthotopic, metastatic xenograft and patient-derived xenograft (PDX) models in vivo. Mechanistic studies showed that YH677 inhibits the expansion of CSCs by regulating the TGFß/Smad signaling pathway. These preclinical data provide a basis for the development of YH677 as a lead compound for TNBC treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias de Mama Triplo Negativas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias de Mama Triplo Negativas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article