Your browser doesn't support javascript.
loading
(+)-Borneol enantiomer ameliorates epileptic seizure via decreasing the excitability of glutamatergic transmission.
Wang, Yu; Qiu, Xiao-Yun; Liu, Jia-Ying; Tan, Bei; Wang, Fei; Sun, Min-Juan; Jiang, Xu-Hong; Ji, Xu-Ming; Xu, Ceng-Lin; Wang, Yi; Chen, Zhong.
Afiliação
  • Wang Y; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Qiu XY; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Liu JY; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Tan B; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Wang F; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Sun MJ; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Jiang XH; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Ji XM; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Xu CL; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
  • Wang Y; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China. wang-yi@zju.edu.cn.
  • Chen Z; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China. wang-yi@zju.edu.cn.
Acta Pharmacol Sin ; 44(8): 1600-1611, 2023 Aug.
Article em En | MEDLINE | ID: mdl-36973542
ABSTRACT
Epilepsy is one common brain disorder, which is not well controlled by current pharmacotherapy. In this study we characterized the therapeutic potential of borneol, a plant-derived bicyclic monoterpene compound, in the treatment of epilepsy and elucidated the underlying mechanisms. The anti-seizure potency and properties of borneol were assessed in both acute and chronic mouse epilepsy models. Administration of (+)-borneol (10, 30, 100 mg/kg, i.p.) dose-dependently attenuated acute epileptic seizure in maximal-electroshock seizure (MES) and pentylenetetrazol (PTZ)-induced seizure models without obvious side-effect on motor function. Meanwhile, (+)-borneol administration retarded kindling-induced epileptogenesis and relieved fully kindled seizures. Importantly, (+)-borneol administration also showed therapeutic potential in kainic acid-induced chronic spontaneous seizure model, which was considered as a drug-resistant model. We compared the anti-seizure efficacy of 3 borneol enantiomers in the acute seizure models, and found (+)-borneol being the most satisfying one with long-term anti-seizure effect. In electrophysiological study conducted in mouse brain slices containing the subiculum region, we revealed that borneol enantiomers displayed different anti-seizure mechanisms, (+)-borneol (10 µM) markedly suppressed the high frequency burst firing of subicular neurons and decreased glutamatergic synaptic transmission. In vivo calcium fiber photometry analysis further verified that administration of (+)-borneol (100 mg/kg) inhibited the enhanced glutamatergic synaptic transmission in epilepsy mice. We conclude that (+)-borneol displays broad-spectrum anti-seizure potential in different experimental models via decreasing the glutamatergic synaptic transmission without obvious side-effect, suggesting (+)-borneol as a promising anti-seizure compound for pharmacotherapy in epilepsy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Epilepsia / Excitação Neurológica Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Epilepsia / Excitação Neurológica Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article