Your browser doesn't support javascript.
loading
Metabolic flux enhancement from the translational fusion of terpene synthases is linked to terpene synthase accumulation.
Cheah, Li Chen; Liu, Lian; Stark, Terra; Plan, Manuel R; Peng, Bingyin; Lu, Zeyu; Schenk, Gerhard; Sainsbury, Frank; Vickers, Claudia E.
Afiliação
  • Cheah LC; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia.
  • Liu L; Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia.
  • Stark T; Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia.
  • Plan MR; Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia.
  • Peng B; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; ARC Centre of Excelle
  • Lu Z; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
  • Schenk G; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
  • Sainsbury F; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; Centre for Cell Facto
  • Vickers CE; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; ARC Centre of Excelle
Metab Eng ; 77: 143-151, 2023 05.
Article em En | MEDLINE | ID: mdl-36990382
ABSTRACT
The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), corresponding with increases of a similar magnitude in terpene synthase levels. Our data demonstrate that increased in vivo enzyme levels - resulting from improved expression and/or improved protein stability - is a major driver of catalytic enhancement from enzyme fusion.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sesquiterpenos / Alquil e Aril Transferases Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sesquiterpenos / Alquil e Aril Transferases Idioma: En Ano de publicação: 2023 Tipo de documento: Article