Your browser doesn't support javascript.
loading
A high-performance and flexible electrode film based on bacterial cellulose/polypyrrole/nitrogen-doped graphene for supercapacitors.
Li, Qinglu; Tang, Ruihua; Zhou, Hao; Hu, Xuxu; Zhang, Sufeng.
Afiliação
  • Li Q; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Te
  • Tang R; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Te
  • Zhou H; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Te
  • Hu X; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Te
  • Zhang S; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Te
Carbohydr Polym ; 311: 120754, 2023 Jul 01.
Article em En | MEDLINE | ID: mdl-37028857
ABSTRACT
With the development and popularity of portable electronic devices, there is an urgent need for flexible energy storage devices suitable for mass production. We report freestanding paper electrodes for supercapacitors fabricated via a simple but efficient two-step method. Nitrogen-doped graphene (N-rGO) was first prepared via a hydrothermal method. This not only obtained nitrogen atom-doped nanoparticles but also formed reduced graphene oxide. Pyrrole (Py) was then deposited on the bacterial cellulose (BC) fibers as a polypyrrole (PPy) pseudo-capacitance conductive layer by in situ polymerization and filtered with nitrogen-doped graphene to prepare a self-standing flexible paper electrode with a controllable thickness. The synthesized BC/PPy/N15-rGO paper electrode has a remarkable mass specific capacitance of 441.9 F g-1, a long cycle life (96 % retention after 3000 cycles), and excellent rate performance. The BC/PPy/N15-rGO-based symmetric supercapacitor shows a high volumetric specific capacitance of 244 F cm-3 and a max energy density of 67.9 mWh cm-3 with a power density of 1.48 W cm-3, suggesting that they will be promising materials for flexible supercapacitors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article