Your browser doesn't support javascript.
loading
Topological antichiral surface states in a magnetic Weyl photonic crystal.
Xi, Xiang; Yan, Bei; Yang, Linyun; Meng, Yan; Zhu, Zhen-Xiao; Chen, Jing-Ming; Wang, Ziyao; Zhou, Peiheng; Shum, Perry Ping; Yang, Yihao; Chen, Hongsheng; Mandal, Subhaskar; Liu, Gui-Geng; Zhang, Baile; Gao, Zhen.
Afiliação
  • Xi X; Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
  • Yan B; Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
  • Yang L; Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
  • Meng Y; Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
  • Zhu ZX; Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
  • Chen JM; Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
  • Wang Z; Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
  • Zhou P; National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, 611731, Chengdu, China.
  • Shum PP; Department of Electronic and Electrical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
  • Yang Y; Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, ZJU-UIUC Institute, Zhejiang University, 310027, Hangzhou, China.
  • Chen H; Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, ZJU-UIUC Institute, Zhejiang University, 310027, Hangzhou, China.
  • Mandal S; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
  • Liu GG; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore. guigeng001@e.ntu.edu.sg.
  • Zhang B; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore. blzhang@ntu.edu.sg.
  • Gao Z; Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore, 639798, Singapore. blzhang@ntu.edu.sg.
Nat Commun ; 14(1): 1991, 2023 Apr 08.
Article em En | MEDLINE | ID: mdl-37031270
Chiral edge states that propagate oppositely at two parallel strip edges are a hallmark feature of Chern insulators which were first proposed in the celebrated two-dimensional (2D) Haldane model. Subsequently, counterintuitive antichiral edge states that propagate in the same direction at two parallel strip edges were discovered in a 2D modified Haldane model. Recently, chiral surface states, the 2D extension of one-dimensional (1D) chiral edge states, have also been observed in a photonic analogue of a 3D Haldane model. However, despite many recent advances in antichiral edge states and chiral surface states, antichiral surface states, the 2D extension of 1D antichiral edge states, have never been realized in any physical system. Here, we report the experimental observation of antichiral surface states by constructing a 3D modified Haldane model in a magnetic Weyl photonic crystal with two pairs of frequency-shifted Weyl points (WPs). The 3D magnetic Weyl photonic crystal consists of gyromagnetic cylinders with opposite magnetization in different triangular sublattices of a 3D honeycomb lattice. Using microwave field-mapping measurements, unique properties of antichiral surface states have been observed directly, including the antichiral robust propagation, tilted surface dispersion, a single open Fermi arc connecting two projected WPs and a single Fermi loop winding around the surface Brillouin zone (BZ). These results extend the scope of antichiral topological states and enrich the family of magnetic Weyl semimetals.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article