Your browser doesn't support javascript.
loading
Machine learning for optimal flow control in an axial compressor.
Elhawary, M A; Romanò, Francesco; Loiseau, Jean-Christophe; Dazin, Antoine.
Afiliação
  • Elhawary MA; Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014, LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, 59000, Lille, France.
  • Romanò F; Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014, LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, 59000, Lille, France.
  • Loiseau JC; Arts et Métiers Institute of Technology, CNAM, DynFluid, HESAM Université, 75013, Paris, France.
  • Dazin A; Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014, LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, 59000, Lille, France. antoine.dazin@ensam.eu.
Eur Phys J E Soft Matter ; 46(4): 28, 2023 Apr 12.
Article em En | MEDLINE | ID: mdl-37043075
Air jets for active flow control have proved effective in postponing the onset of stall phenomenon in axial compressors. In this paper, we use a combination of machine learning and genetic algorithm to explore the optimal parameters of air jets to control rotating stall in the axial compressor CME2. Three control parameters are investigated: the absolute injection angle, the number of injector pairs and the injection velocity. Given an experimental dataset, the influence of the air jet parameters on the surge margin improvement and power balance is modeled using two shallow neural networks. Parameters of the air jets are then optimized using a genetic algorithm for three rotational velocities, i.e., [Formula: see text]. First, surge margin improvement and power balance are being maximized independently. Then, a bi-objective optimization problem is posed to explore the trade-off between the two competing objectives. Based on the Pareto front, results suggest that a globally optimal set of parameters is obtained for a velocity ratio (defined as the ratio of the injection velocity to the rotor tip speed) ranging from 1.1 to 1.6 and an injection angle attack varying from [Formula: see text]. These outcomes point out a potential generalization of the control strategy applicable to other compressors.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article