Your browser doesn't support javascript.
loading
Bimetal-organic framework-derived porous CoFe2O4 nanoparticles as biocompatible anode electrocatalysts for improving the power generation of microbial fuel cells.
Ren, Tingli; Liu, Yuanfeng; Shi, Chunhong; Li, Congju.
Afiliação
  • Ren T; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in
  • Liu Y; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in
  • Shi C; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in
  • Li C; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in
J Colloid Interface Sci ; 643: 428-436, 2023 Aug.
Article em En | MEDLINE | ID: mdl-37086532
ABSTRACT

HYPOTHESIS:

The relatively lower power density of Microbial fuel cells (MFCs), primarily resulting from weak biofilm habitation and sluggish extracellular electron transfer (EET) at the anode interface, limits their practical implementation on a large scale. To address this challenge, porous CoFe2O4 nanoparticles could be used as anode electrocatalysts based on the following considerations (i) the introduction of CoFe2O4 nanoparticles endows the anode with a rough surface that facilitates biofilm formation; (ii) the positively charged Co and Fe ions improve the interfacial affinity of anodes, enabling rapid immobilization and colonization of negatively bacteria; (iii) the multi-valent metal states of Co and Fe can function as electron shuttles, mediating EET process between biofilm and anode. EXPERIMENTS CoFe2O4 nanoparticles prepared with a bimetal-organic framework (B-MOF) as precursor, were modified to the surface of carbon cloth as the anode of MFCs.

FINDINGS:

MFCs equipped with CoFe2O4 anode achieved a maximum power density of 1026.68 mW m-2, which was approximately 3.4 times higher than that of the pristine carbon cloth. Additionally, the biofilm density and viability on the anode were enhanced after CoFe2O4 modification. Considering the facile fabrication process and superior electrocatalytic performance, the CoFe2O4 nanoparticles are promising electrocatalysts for high performance and cost-effective MFCs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fontes de Energia Bioelétrica / Nanopartículas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fontes de Energia Bioelétrica / Nanopartículas Idioma: En Ano de publicação: 2023 Tipo de documento: Article