Your browser doesn't support javascript.
loading
Coordination-Modulated Metal Tetrathiafulvalene Octacarboxylate Frameworks for High-Performance Lithium-Ion Battery Anodes.
Yang, Zhi-Mei; Zhao, Shu-Peng; Zhang, Meng-Hang; Zhang, Ze-Dong; Ma, Tian-Rui; Yuan, Shuai; Su, Jian; Li, Cheng-Hui; Zuo, Jing-Lin.
Afiliação
  • Yang ZM; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
  • Zhao SP; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
  • Zhang MH; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
  • Zhang ZD; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
  • Ma TR; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
  • Yuan S; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
  • Su J; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
  • Li CH; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
  • Zuo JL; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
Angew Chem Int Ed Engl ; 62(27): e202304183, 2023 Jul 03.
Article em En | MEDLINE | ID: mdl-37154674
ABSTRACT
Modulation of the ligands and coordination environment of metal-organic frameworks (MOFs) has been an effective and relatively unexplored avenue for improving the anode performance of lithium-ion batteries (LIBs). In this study, three MOFs are synthesized, namely, M4 (o-TTFOB)(bpm)2 (H2 O)2 (where M is Mn, Zn, and Cd; o-H8 TTFOB is ortho-tetrathiafulvalene octabenzoate; and bpm is 2,2'-bipyrimidine), based on a new ligand o-H8 TTFOB with two adjacent carboxylates on one phenyl, which allows us to establish the impact of metal coordination on the performance of these MOFs as anode materials in LIBs. Mn-o-TTFOB and Zn-o-TTFOB, with two more uncoordinated oxygen atoms from o-TTFOB8- , show higher reversible specific capacities of 1249 mAh g-1 and 1288 mAh g-1 under 200 mA g-1 after full activation. In contrast, Cd-o-TTFOB shows a reversible capacity of 448 mAh g-1 under the same condition due to the lack of uncoordinated oxygen atoms. Crystal structure analysis, cyclic voltammetry measurements of the half-cell configurations, and density functional theory calculations have been performed to explain the lithium storage mechanism, diffusion kinetics, and structure-function relationship. This study demonstrates the advantages of MOFs with high designability in the fabrication of LIBs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article