Global Xenobiotic Profiling of Rat Plasma Using Untargeted Metabolomics and Background Subtraction-Based Approaches: Method Evaluation and Comparison.
Curr Drug Metab
; 24(3): 200-210, 2023.
Article
em En
| MEDLINE
| ID: mdl-37157207
BACKGROUND: Global xenobiotic profiling (GXP) is to detect and structurally characterize all xenobiotics in biological samples using mainly liquid chromatography-high resolution mass spectrometry (LC-HRMS) based methods. GXP is highly needed in drug metabolism study, food safety testing, forensic chemical analysis, and exposome research. For detecting known or predictable xenobiotics, targeted LC-HRMS data processing methods based on molecular weights, mass defects and fragmentations of analytes are routinely employed. For profiling unknown xenobiotics, untargeted and LC-HRMS based metabolomics and background subtraction-based approaches are required. OBJECTIVE: This study aimed to evaluate the effectiveness of untargeted metabolomics and the precise and thorough background subtraction (PATBS) in GXP of rat plasma. METHODS: Rat plasma samples collected from an oral administration of nefazodone (NEF) or Glycyrrhizae Radix et Rhizoma (Gancao, GC) were analyzed by LC-HRMS. NEF metabolites and GC components in rat plasma were thoroughly searched and characterized via processing LC-HRMS datasets using targeted and untargeted methods. RESULTS: PATBS detected 68 NEF metabolites and 63 GC components, while the metabolomic approach (MS-DIAL) found 67 NEF metabolites and 60 GC components in rat plasma. The two methods found 79 NEF metabolites and 80 GC components with 96% and 91% successful rates, respectively. CONCLUSION: Metabolomics methods are capable of GXP and measuring alternations of endogenous metabolites in a group of biological samples, while PATBS is more suited for sensitive GXP of a single biological sample. A combination of metabolomics and PATBS approaches can generate better results in the untargeted profiling of unknown xenobiotics.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Xenobióticos
/
Metabolômica
Limite:
Animals
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article