Your browser doesn't support javascript.
loading
Inhibition of TRAF6 improves hyperlipidemic acute pancreatitis by alleviating pyroptosis in vitro and in vivo rat models.
Wei, Biwei; Su, Zhou; Yang, Huiying; Feng, Yong; Meng, Chunmei; Liang, Zhihai.
Afiliação
  • Wei B; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China.
  • Su Z; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China.
  • Yang H; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China.
  • Feng Y; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China.
  • Meng C; Life Sciences Institute, Guangxi Medical University, Nanning, China.
  • Liang Z; Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China. ahhai@163.com.
Biol Direct ; 18(1): 23, 2023 05 10.
Article em En | MEDLINE | ID: mdl-37165439
OBJECTIVE: Hypertriglyceridemia (HTG) is one of the common causes of acute pancreatitis (AP). Hyperlipidemic acute pancreatitis (HTG-AP) is associated with higher mortality owing to its tendency for greater severity and rapid progression. The purpose of this study was to explore the mechanism of involvement of tumor necrosis factor receptor-related factor 6 (TRAF6) in pyroptosis during HTG-AP. METHODS: The HTG environment was simulated with palmitic acid treatment in vitro and a high-fat diet in vivo. Cerulein was used to establish the HTG-AP model, followed by genetic and pharmacological inhibition of TRAF6. Pyroptosis activation, inflammatory reaction, and the interaction between TRAF6 and pyroptosis in HTG-AP were assessed. RESULTS: HTG was found to aggravate the development of pancreatitis, accompanied by increased pyroptosis and enhanced inflammatory response in HTG-AP models. Mechanistically, TRAF6 downregulation decreased the activation of pyroptosis in cerulein-induced HTG-AP. CONCLUSION: Collectively, inhibition of TRAF6 improved HTG-AP and the associated inflammation by alleviating pyroptosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pancreatite / Hipertrigliceridemia Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pancreatite / Hipertrigliceridemia Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article