Your browser doesn't support javascript.
loading
Oxazole-4-carboxamide/butylated hydroxytoluene hybrids with GSK-3ß inhibitory and neuroprotective activities against Alzheimer's disease.
Luo, Zhongwen; Li, Shang; Zhang, Yonglei; Yin, Fucheng; Luo, Heng; Chen, Xinye; Cui, Ningjie; Wan, Siyuan; Li, Xinxin; Kong, Lingyi; Wang, Xiaobing.
Afiliação
  • Luo Z; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Li S; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Zhang Y; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Yin F; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Luo H; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Chen X; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Cui N; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Wan S; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Li X; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • Kong L; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China. Electronic address: cpu_lykong@126.com.
  • Wang X; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China. Electronic address: xbwang@cpu.edu.cn.
Eur J Med Chem ; 256: 115415, 2023 Aug 05.
Article em En | MEDLINE | ID: mdl-37172476
Neuronal cells overexpressing phosphorylated Tau proteins can increase the susceptibility to oxidative stress. Regulation of glycogen synthase-3ß (GSK-3ß) and reduction of Tau protein hyperphosphorylation, along with alleviation of oxidative stress, may be an effective way to prevent or treat Alzheimer's disease (AD). For this purpose, a series of Oxazole-4-carboxamide/butylated hydroxytoluene hybrids were designed and synthesized to achieve multifunctional effects on AD. The biological evaluation showed that the optimized compound KWLZ-9e displayed potential GSK-3ß (IC50 = 0.25 µM) inhibitory activity and neuroprotective capacity. Tau protein inhibition assays showed that KWLZ-9e reduced the expression of GSK-3ß and downstream p-Tau in HEK GSK-3ß 293T cells. Meanwhile, KWLZ-9e could alleviate H2O2-induced ROS damage, mitochondrial membrane potential imbalance, Ca2+ influx and apoptosis. Mechanistic studies suggest that KWLZ-9e activates the Keap1-Nrf2-ARE signaling pathway and enhances the expression of downstream oxidative stress proteins including TrxR1, HO-1, NQO1, GCLM to exert cytoprotective effects. We also confirmed that KWLZ-9e could ameliorate learning and memory impairments in vivo model of AD. The multifunctional properties of KWLZ-9e suggest that it is a promising lead for the treatment of AD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fármacos Neuroprotetores / Doença de Alzheimer Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fármacos Neuroprotetores / Doença de Alzheimer Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article