Oxazole-4-carboxamide/butylated hydroxytoluene hybrids with GSK-3ß inhibitory and neuroprotective activities against Alzheimer's disease.
Eur J Med Chem
; 256: 115415, 2023 Aug 05.
Article
em En
| MEDLINE
| ID: mdl-37172476
Neuronal cells overexpressing phosphorylated Tau proteins can increase the susceptibility to oxidative stress. Regulation of glycogen synthase-3ß (GSK-3ß) and reduction of Tau protein hyperphosphorylation, along with alleviation of oxidative stress, may be an effective way to prevent or treat Alzheimer's disease (AD). For this purpose, a series of Oxazole-4-carboxamide/butylated hydroxytoluene hybrids were designed and synthesized to achieve multifunctional effects on AD. The biological evaluation showed that the optimized compound KWLZ-9e displayed potential GSK-3ß (IC50 = 0.25 µM) inhibitory activity and neuroprotective capacity. Tau protein inhibition assays showed that KWLZ-9e reduced the expression of GSK-3ß and downstream p-Tau in HEK GSK-3ß 293T cells. Meanwhile, KWLZ-9e could alleviate H2O2-induced ROS damage, mitochondrial membrane potential imbalance, Ca2+ influx and apoptosis. Mechanistic studies suggest that KWLZ-9e activates the Keap1-Nrf2-ARE signaling pathway and enhances the expression of downstream oxidative stress proteins including TrxR1, HO-1, NQO1, GCLM to exert cytoprotective effects. We also confirmed that KWLZ-9e could ameliorate learning and memory impairments in vivo model of AD. The multifunctional properties of KWLZ-9e suggest that it is a promising lead for the treatment of AD.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fármacos Neuroprotetores
/
Doença de Alzheimer
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article