Contrast optimization of Fresnel zone plate imaging.
Rev Sci Instrum
; 94(5)2023 May 01.
Article
em En
| MEDLINE
| ID: mdl-37184346
Fresnel zone plates (FZPs) are circular diffractive elements that operate as a lens for x-rays. They have gained interest in the field of laser-plasma physics due to their ability to achieve higher spatial resolution than pinholes. Their design and implementation are complicated by the fact that a significant amount of the x-rays passing through the FZP will not diffract (zeroth order) and present a background to the measurement. This background can be large and inhomogeneous depending on the geometric setup of the experiment. Here, we present calculations of the diffracted (first order) and un-diffracted (zeroth order) flux profiles, which makes it possible to optimize the contrast between the first order imaging rays and the zeroth order background. Calculations for the implementation of a central block in the FZP, designed to block the zeroth from the entire field of view, are also presented.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article