Your browser doesn't support javascript.
loading
Automatic Analysis of Transverse Musculoskeletal Ultrasound Images Based on the Multi-Task Learning Model.
Zhou, Linxueying; Liu, Shangkun; Zheng, Weimin.
Afiliação
  • Zhou L; College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
  • Liu S; College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
  • Zheng W; College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
Entropy (Basel) ; 25(4)2023 Apr 14.
Article em En | MEDLINE | ID: mdl-37190450
Musculoskeletal ultrasound imaging is an important basis for the early screening and accurate treatment of muscle disorders. It allows the observation of muscle status to screen for underlying neuromuscular diseases including myasthenia gravis, myotonic dystrophy, and ankylosing muscular dystrophy. Due to the complexity of skeletal muscle ultrasound image noise, it is a tedious and time-consuming process to analyze. Therefore, we proposed a multi-task learning-based approach to automatically segment and initially diagnose transverse musculoskeletal ultrasound images. The method implements muscle cross-sectional area (CSA) segmentation and abnormal muscle classification by constructing a multi-task model based on multi-scale fusion and attention mechanisms (MMA-Net). The model exploits the correlation between tasks by sharing a part of the shallow network and adding connections to exchange information in the deep network. The multi-scale feature fusion module and attention mechanism were added to MMA-Net to increase the receptive field and enhance the feature extraction ability. Experiments were conducted using a total of 1827 medial gastrocnemius ultrasound images from multiple subjects. Ten percent of the samples were randomly selected for testing, 10% as the validation set, and the remaining 80% as the training set. The results show that the proposed network structure and the added modules are effective. Compared with advanced single-task models and existing analysis methods, our method has a better performance at classification and segmentation. The mean Dice coefficients and IoU of muscle cross-sectional area segmentation were 96.74% and 94.10%, respectively. The accuracy and recall of abnormal muscle classification were 95.60% and 94.96%. The proposed method achieves convenient and accurate analysis of transverse musculoskeletal ultrasound images, which can assist physicians in the diagnosis and treatment of muscle diseases from multiple perspectives.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article