Your browser doesn't support javascript.
loading
Managing Multiple Halide-Related Defects for Efficient and Stable Inorganic Perovskite Solar Cells.
Wang, Zhiteng; Tian, Qingwen; Zhang, Hao; Xie, Huidong; Du, Yachao; Liu, Lei; Feng, Xiaolong; Najar, Adel; Ren, Xiaodong; Liu, Shengzhong Frank.
Afiliação
  • Wang Z; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Tian Q; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Zhang H; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Xie H; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Du Y; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
  • Liu L; School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China.
  • Feng X; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Najar A; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Ren X; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Liu SF; Department of Physics, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
Angew Chem Int Ed Engl ; 62(30): e202305815, 2023 Jul 24.
Article em En | MEDLINE | ID: mdl-37227157
Halide-related surface defects on inorganic halide perovskite not only induce charge recombination but also severely limit the long-term stability of perovskite solar cells. Herein, adopting density functional theory calculation, we verify that iodine interstitials (Ii ) has a low formation energy similar to that of the iodine vacancy (VI ) and is also readily formed on the surface of all-inorganic perovskite, and it is regarded to function as an electron trap. We screen a specific 2,6-diaminopyridine (2,6-DAPy) passivator, which, with the aid of the combined effects from halogen-Npyridine and coordination bonds, not only successfully eliminates the Ii and dissociative I2 but also passivates the abundant VI . Furthermore, the two symmetric neighboring -NH2 groups interact with adjacent halides of the octahedral cluster by forming hydrogen bonds, which further promotes the adsorption of 2,6-DAPy molecules onto the perovskite surface. Such synergetic effects can significantly passivate harmful iodine-related defects and undercoordinated Pb2+ , prolong carrier lifetimes and facilitate the interfacial hole transfer. Consequently, these merits enhance the power-conversion efficiency (PCE) from 19.6 % to 21.8 %, the highest value for this type of solar cells, just as importantly, the 2,6-DAPy-treated CsPbI3-x Brx films show better environmental stability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article