Your browser doesn't support javascript.
loading
A novel transcription factor, BmZFP67, regulates endomitosis switch by controlling the expression of cyclin B in silk glands.
Zhou, Xiao-Lin; Wei, Yi; Chen, Peng; Yang, Xi; Lu, Cheng; Pan, Min-Hui.
Afiliação
  • Zhou XL; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
  • Wei Y; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
  • Chen P; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
  • Yang X; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
  • Lu C; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China. Electronic address: lucheng@swu.edu.cn.
  • Pan MH; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China. Electronic address: pmh047@126.com.
Int J Biol Macromol ; 242(Pt 4): 124931, 2023 Jul 01.
Article em En | MEDLINE | ID: mdl-37263320
Endomitosis is involved in developmental processes associated with an increase in metabolic cell activity, which is characterized by repeated rounds of DNA replication without cytokinesis. Endomitosis cells are widespread in protozoa, plants, animals and humans. Endomitosis cell cycle is currently viewed as a variation of the canonical cell cycle and transformed from mitotic cell cycle. However, the meaningful question about how endomitosis transformed from mitosis is still unclear. Herein, we identified a novel transcription factor in silk glands, ZFP67, which is gradually reduced in silk glands during the transition of mitosis to endomitosis. In addition, over-expressed ZFP67 in silk glands led to the transition delayed. And, knock-out of ZFP67 led to abnormal chromatin division and unsuccessful cell division. These data reveled that ZFP67 played an important role in transition of mitosis to endomitosis. Furthermore, ZFP67 can regulate the transcription of cyclin B, a key cyclin related to cell division and G2/M phase, which is demonstrated by chromatin immunoprecipitation and dual luciferase reporter system in this article. In conclusion, it can be speculated that the decreasing expression of ZFP67 in silk glands during the transition stage of mitosis-to-endomitosis resulted in the lack of cyclin B, which further led to unsuccessful cytokinesis and then promoted the transition from mitosis to endomitosis of silk gland cells.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Mitose Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Mitose Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article