Your browser doesn't support javascript.
loading
Lung Persistence, Biodegradation, and Elimination of Graphene-Based Materials are Predominantly Size-Dependent and Mediated by Alveolar Phagocytes.
Loret, Thomas; de Luna, Luis Augusto Visani; Lucherelli, Matteo Andrea; Fordham, Alexander; Lozano, Neus; Bianco, Alberto; Kostarelos, Kostas; Bussy, Cyrill.
Afiliação
  • Loret T; Nanomedicine Lab 2.0, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
  • de Luna LAV; National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
  • Lucherelli MA; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
  • Fordham A; Nanomedicine Lab 2.0, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
  • Lozano N; National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
  • Bianco A; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
  • Kostarelos K; CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France.
  • Bussy C; Nanomedicine Lab 2.0, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
Small ; 19(39): e2301201, 2023 09.
Article em En | MEDLINE | ID: mdl-37264768
Graphene-based materials (GBMs) have promising applications in various sectors, including pulmonary nanomedicine. Nevertheless, the influence of GBM physicochemical characteristics on their fate and impact in lung has not been thoroughly addressed. To fill this gap, the biological response, distribution, and bio-persistence of four different GBMs in mouse lungs up to 28 days after single oropharyngeal aspiration are investigated. None of the GBMs, varying in size (large versus small) and carbon to oxygen ratio as well as thickness (few-layers graphene (FLG) versus thin graphene oxide (GO)), induce a strong pulmonary immune response. However, recruited neutrophils internalize nanosheets better and degrade GBMs faster than macrophages, revealing their crucial role in the elimination of small GBMs. In contrast, large GO sheets induce more damages due to a hindered degradation and long-term persistence in macrophages. Overall, small dimensions appear to be a leading feature in the design of safe GBM pulmonary nanovectors due to an enhanced degradation in phagocytes and a faster clearance from the lungs for small GBMs. Thickness also plays an important role, since decreased material loading in alveolar phagocytes and faster elimination are found for FLGs compared to thinner GOs. These results are important for designing safer-by-design GBMs for biomedical application.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Grafite Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Grafite Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article