Your browser doesn't support javascript.
loading
Crypt-like patterned electrospun nanofibrous membrane and probiotics promote intestinal epithelium models close to tissues.
Li, Yue; Niu, Hong-Mei; Guo, Ya-Xin; Ma, Xue-Ke; Hu, Meng-Xin; Han, Jian-Zhong; Qin, Yu-Mei.
Afiliação
  • Li Y; Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Niu HM; Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Guo YX; Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Ma XK; Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Hu MX; Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. mengxinhu@zjgsu.edu.cn.
  • Han JZ; Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
  • Qin YM; Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
Appl Microbiol Biotechnol ; 107(13): 4395-4408, 2023 Jul.
Article em En | MEDLINE | ID: mdl-37266585
ABSTRACT
In vitro intestinal epithelium models have drawn great attention to investigating intestinal biology in recent years. However, the difficulty to maintain the normal physiological status of primary intestinal epithelium in vitro limits the applications. Here, we designed patterned electrospun polylactic acid (PLA) nanofibrous membranes with crypt-like topography and mimic ECM fibrous network to support crypt culture and construct in vitro intestinal epithelium models. The patterned electrospun PLA nanofibrous membranes modified with Matrigels at 0 °C showed high biocompatibility and promoted cell growth and proliferation. The constructed duodenum epithelium models and colon epithelium models on the patterned electrospun PLA nanofibrous membranes expressed the typical differentiation markers of intestinal epithelia and the gene expression levels were close to the original tissues, especially with the help of probiotics. The constructed intestinal epithelium models could be used to assess probiotic adhesion and colonization, which were verified to show significant differences with the Caco-2 cell models due to the different cell types. These findings provide new insights and a better understanding of the roles of biophysical, biochemical, and biological signals in the construction of in vitro intestinal epithelium models as well as the potential applications of these models in the study of host-gut microbes interactions. KEY POINTS • Patterned electrospun scaffold has crypt-like topography and ECM nanofibrous network. • Matrigels at 0°C modify scaffolds more effectively than at 37°C. • Synergy of biomimic scaffold and probiotics makes in vitro model close to tissue.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alicerces Teciduais / Nanofibras Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alicerces Teciduais / Nanofibras Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article