Your browser doesn't support javascript.
loading
The Scap-SREBP1-S1P/S2P lipogenesis signal orchestrates the homeostasis and spatiotemporal activation of NF-κB.
Fei, Xia; Huang, Jiaqi; Li, Fei; Wang, Yuejue; Shao, Zhehua; Dong, Lingling; Wu, Yinfang; Li, Boran; Zhang, Xue; Lv, Baihui; Zhao, Yun; Weng, Qingyu; Chen, Kaijun; Zhang, Min; Yang, Shiyi; Zhang, Chao; Zhang, Min; Li, Wen; Ying, Songmin; Sun, Qiming; Chen, Zhihua; Shen, Huahao.
Afiliação
  • Fei X; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, S
  • Huang J; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Li F; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Wang Y; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Shao Z; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Dong L; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Wu Y; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Li B; Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Zhang X; Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
  • Lv B; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Zhao Y; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Weng Q; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Chen K; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Zhang M; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Yang S; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Zhang C; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Zhang M; Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
  • Li W; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Ying S; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
  • Sun Q; Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China. Electronic address: qmsun@zju.edu.cn.
  • Chen Z; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China. Electronic address: zhihuachen@zju.edu.cn.
  • Shen H; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; State Key Lab for Respiratory Diseases, National Clinical Research Centre for Resp
Cell Rep ; 42(6): 112586, 2023 06 27.
Article em En | MEDLINE | ID: mdl-37267109
ABSTRACT
The nuclear factor κB (NF-κB) pathway plays essential roles in innate and adaptive immunity, but little is known how NF-κB signaling is compartmentalized and spatiotemporally activated in the cytoplasm. Here, we show that the lipogenesis signal cascade Scap-SREBP1-S1P/S2P orchestrates the homeostasis and spatiotemporal activation of NF-κB. SREBP cleavage-activating protein (Scap) and sterol regulatory element-binding protein 1 (SREBP1) form a super complex with inhibitors of NF-κB α (IκBα) to associate NF-κB close to the endoplasmic reticulum (ER). Upon lipopolysaccharide (LPS) stimulation, Scap transports the complex to the Golgi apparatus, where SREBP1 is cleaved by site-1 protease (S1P)/S2P, liberating IκBα for IκB kinase (Ikk)-mediated phosphorylation and subsequent activation of NF-κB. Loss of Scap or inhibition of S1P or S2P diminishes, while SREBP1 deficiency augments, LPS-induced NF-κB activation and subsequent inflammatory responses. Our results reveal the Scap-SREBP1 complex as an additional cytoplasmic checkpoint for NF-κB homeostasis and unveil the Golgi apparatus as the optimal cellular platform for NF-κB activation, providing insights into the crosstalk between lipogenesis signaling and immunity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: NF-kappa B / Lipogênese Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: NF-kappa B / Lipogênese Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article