Your browser doesn't support javascript.
loading
X-Ray-Induced Drug Release for Cancer Therapy.
Liu, Hui; Zhao, Jun; Xue, Yufei; Zhang, Jiaxin; Bai, Hua; Pan, Sijun; Peng, Bo; Li, Lin; Voelcker, Nicolas H.
Afiliação
  • Liu H; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China.
  • Zhao J; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China.
  • Xue Y; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China.
  • Zhang J; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China.
  • Bai H; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China.
  • Pan S; The Institute of Flexible Electronics, IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China.
  • Peng B; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME) and Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China.
  • Li L; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 399 Royal Parade, Parkville, Victoria, 3052, Australia.
  • Voelcker NH; Wuhan National Laboratory for Optoelectronics, Advanced Biomedical Imaging Facility, 13 Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Angew Chem Int Ed Engl ; 62(39): e202306100, 2023 09 25.
Article em En | MEDLINE | ID: mdl-37278399
ABSTRACT
Drug delivery systems (DDSs) are designed to deliver therapeutic agents to specific target sites while minimizing systemic toxicity. Recent developments in drug-loaded DDSs have demonstrated promising characteristics and paved new pathways for cancer treatment. Light, a prevalent external stimulus, is widely utilized to trigger drug release. However, conventional light sources primarily concentrate on the ultraviolet (UV) and visible light regions, which suffer from limited biological tissue penetration. This limitation hinders applications for deep-tissue tumor drug release. Given their deep tissue penetration and well-established application technology, X-rays have recently received attention for the pursuit of controlled drug release. With precise spatiotemporal and dosage controllability, X-rays stand as an ideal stimulus for achieving controlled drug release in deep-tissue cancer therapy. This article explores the recent advancements in using X-rays for stimulus-triggered drug release in DDSs and delves into their action mechanisms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article