Your browser doesn't support javascript.
loading
Human Serum Albumin-enriched Clopidogrel Bisulfate Nanoparticle Alleviates Cerebral Ischemia-Reperfusion Injury in Rats.
Luo, Yiting; Xia, Yunli; Zhang, Haonan; Lin, Yunzhu; He, Lili; Gong, Tao; Zhang, Zhirong; Deng, Li.
Afiliação
  • Luo Y; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Xia Y; College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
  • Zhang H; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Lin Y; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • He L; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Gong T; Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, 610041, China.
  • Zhang Z; College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
  • Deng L; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
Pharm Res ; 40(7): 1821-1833, 2023 Jul.
Article em En | MEDLINE | ID: mdl-37291463
ABSTRACT

PURPOSE:

Cerebral ischemia-reperfusion (I/R) injury remains a leading cause of mobility and mortality among patients with ischemic stroke. This study aims to develop a human serum albumin (HSA)-enriched nanoparticle platform for solubilizing clopidogrel bisulfate (CLP) for intravenous administration, and to explore the protective effect of HSA-enriched nanoparticles loaded with CLP (CLP-ANPs) against cerebral I/R injury in transient middle cerebral artery occlusion (MCAO) rat model.

METHODS:

CLP-ANPs were synthesized via a modified nanoparticle albumin-bound technology, lyophilized, and then characterized by morphology, particle size, zeta potential, drug loading capacity, encapsulation efficiency, stability and in vitro release kinetics. In vivo pharmacokinetic studies were conducted using Sprague-Dawley (SD) rats. Also, an MCAO rat model was established to explore the therapeutic effect of CLP-ANPs on cerebral I/R injury.

RESULTS:

CLP-ANPs remained spherical particles with a layer of proteins forming protein corona. Lyophilized CLP-ANPs after dispersion displayed an average size of about 235.6 ± 6.6 nm (PDI = 0.16 ± 0.08) with a zeta potential of about - 13.5 ± 1.8 mV. CLP-ANPs achieved sustained release for up to 168 h in vitro. Next, a single injection of CLP-ANPs dose-dependently reversed the histopathological changes induced by cerebral I/R injury possibly via attenuating apoptosis and reducing oxidative damages in the brain tissues.

CONCLUSIONS:

CLP-ANPs represent a promising and translatable platform system for the management of cerebral I/R injury during ischemic stroke.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Isquemia Encefálica / Nanopartículas / AVC Isquêmico Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Isquemia Encefálica / Nanopartículas / AVC Isquêmico Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article