Your browser doesn't support javascript.
loading
Unveiling the Effect of Organic Sulfur Sources on Synthesized MoS2 Phases and Electrocatalytic Hydrogen Evolution Performances.
Liu, Jiaqi; Wang, Jing; Wei, Baoqiang; Xue, Yanzhong; Ma, Lixia; Jiang, Ruibin.
Afiliação
  • Liu J; Yan'an Quality and Technical Inspection Institute, Yan'an 716000, China.
  • Wang J; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
  • Wei B; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
  • Xue Y; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
  • Ma L; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
  • Jiang R; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
Inorg Chem ; 62(24): 9749-9757, 2023 Jun 19.
Article em En | MEDLINE | ID: mdl-37300494
ABSTRACT
Metallic-phase MoS2 exhibits Pt-comparable electrocatalytic hydrogen evolution reaction (HER) performance in acidic conditions. However, the controllable synthesis of metallic-phase MoS2 is quite challenging because the key factor determining the phase types of MoS2 during synthesis is still unclear. Herein, the effect of organic sulfur sources on the formed MoS2 phase is studied by use of thioacetamide (TAA), l-cysteine, and thiourea as sulfur sources. The TAA and l-cysteine produce metallic MoS2, while thiourea gives rise to semiconducting MoS2. Owing to the metallic phase and smaller size, the MoS2 prepared with TAA and l-cysteine has a higher electrocatalytic HER activity than the MoS2 obtained from thiourea. The HER overpotential of MoS2 synthesized with TAA is only 210 mV for reaching the current density of 10 mA/cm2, and the corresponding Tafel slope is 44 mV/decade. Further studies find that the decomposition temperature of sulfur precursors is the key factor for the formation of metallic MoS2. Sulfur precursors with a lower decomposition temperature release sulfur ions quickly, which in turn stabilize the metallic phase and inhibit the growth of MoS2 into large sizes. Our findings unveil the key factor for controlling the phase type of MoS2 synthesized from organic sulfur precursors and will be very helpful for the synthesis of MoS2 with high electrocatalytic activity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article