Your browser doesn't support javascript.
loading
The spin caloritronic transport properties of newly designed devices consisting of a sawtooth graphene nanoribbon and its derived five-member ring structure.
Ni, Yun; Chen, Kun; Hu, Ni; Deng, Gang; Liu, Jian; Chen, Mingyan.
Afiliação
  • Ni Y; College of Science, Hubei University of Technology, Wuhan, China, 430068. niyun@hbut.edu.cn.
  • Chen K; College of Science, Hubei University of Technology, Wuhan, China, 430068. niyun@hbut.edu.cn.
  • Hu N; College of Science, Hubei University of Technology, Wuhan, China, 430068. niyun@hbut.edu.cn.
  • Deng G; College of Science, Hubei University of Technology, Wuhan, China, 430068. niyun@hbut.edu.cn.
  • Liu J; College of Science, Hubei University of Technology, Wuhan, China, 430068. niyun@hbut.edu.cn.
  • Chen M; Hongzhiwei Technology (Shanghai) Co. Ltd., 1599 Xinjinqiao Road, Pudong, Shanghai, China.
Phys Chem Chem Phys ; 25(24): 16578-16586, 2023 Jun 21.
Article em En | MEDLINE | ID: mdl-37309551
Achieving high spin polarization transport and a pure spin current is particularly desired in spintronics. We use a sawtooth graphene nanoribbon (STGNR) and its derived five-member ring structure (5-STGNR) to design new spin caloritronic devices, since they have been successfully prepared experimentally and have an interface with no lattice distortion. By using first-principle calculations combined with the non-equilibrium Green's function approach, we have studied the spin caloritronic transport properties of several STGNR-based devices, including the structures with symmetrical and asymmetrical edges, and found some excellent spin caloritronic properties, such as spin polarization, magnetoresistance and the spin Seebeck effect. By introducing a temperature difference, giant magnetoresistance and spin Seebeck effects are achieved in a heterojunction with a symmetrical edge, whereas spin polarization is more effective in a heterojunction with an asymmetrical edge. Meanwhile, the metal-semiconductor-metal junction, which is composed of STGNRs with a symmetrical edge, exhibits approximately 100% spin polarization and produces a perfect thermally induced pure spin current at room temperature. Our results indicate that the devices consisting of a sawtooth graphene nanoribbon and its derived five-member ring structure are promising novel spin caloritronic devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article