Your browser doesn't support javascript.
loading
Field performance of switchgrass plants engineered for reduced recalcitrance.
Eudes, Aymerick; Lin, Chien-Yuan; De Ben, Christopher; Ortega, Jasmine; Lee, Mi Yeon; Chen, Yi-Chun; Li, Guotian; Putnam, Daniel H; Mortimer, Jenny C; Ronald, Pamela C; Scown, Corinne D; Scheller, Henrik V.
Afiliação
  • Eudes A; Feedstocks and Life-Cycle, Economics and Agronomy Divisions, Joint BioEnergy Institute, Emeryville, CA, United States.
  • Lin CY; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
  • De Ben C; Feedstocks and Life-Cycle, Economics and Agronomy Divisions, Joint BioEnergy Institute, Emeryville, CA, United States.
  • Ortega J; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
  • Lee MY; Feedstocks and Life-Cycle, Economics and Agronomy Divisions, Joint BioEnergy Institute, Emeryville, CA, United States.
  • Chen YC; Department of Plant Sciences, University of California, Davis, CA, United States.
  • Li G; Feedstocks and Life-Cycle, Economics and Agronomy Divisions, Joint BioEnergy Institute, Emeryville, CA, United States.
  • Putnam DH; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
  • Mortimer JC; Feedstocks and Life-Cycle, Economics and Agronomy Divisions, Joint BioEnergy Institute, Emeryville, CA, United States.
  • Ronald PC; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
  • Scown CD; Feedstocks and Life-Cycle, Economics and Agronomy Divisions, Joint BioEnergy Institute, Emeryville, CA, United States.
  • Scheller HV; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
Front Plant Sci ; 14: 1181035, 2023.
Article em En | MEDLINE | ID: mdl-37324714
Switchgrass (Panicum virgatum L.) is a promising perennial bioenergy crop that achieves high yields with relatively low nutrient and energy inputs. Modification of cell wall composition for reduced recalcitrance can lower the costs of deconstructing biomass to fermentable sugars and other intermediates. We have engineered overexpression of OsAT10, encoding a rice BAHD acyltransferase and QsuB, encoding dehydroshikimate dehydratase from Corynebacterium glutamicum, to enhance saccharification efficiency in switchgrass. These engineering strategies demonstrated low lignin content, low ferulic acid esters, and increased saccharification yield during greenhouse studies in switchgrass and other plant species. In this work, transgenic switchgrass plants overexpressing either OsAT10 or QsuB were tested in the field in Davis, California, USA for three growing seasons. No significant differences in the content of lignin and cell wall-bound p-coumaric acid or ferulic acid were detected in transgenic OsAT10 lines compared with the untransformed Alamo control variety. However, the transgenic overexpressing QsuB lines had increased biomass yield and slightly increased biomass saccharification properties compared to the control plants. This work demonstrates good performance of engineered plants in the field, and also shows that the cell wall changes in the greenhouse were not replicated in the field, emphasizing the need to validate engineered plants under relevant field conditions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article