Your browser doesn't support javascript.
loading
Time-resolved transcriptomic profile of oleaginous yeast Rhodotorula mucilaginosa during lipid and carotenoids accumulation on glycerol.
Sailwal, Megha; Mishra, Pallavi; Bhaskar, Thallada; Pandey, Rajesh; Ghosh, Debashish.
Afiliação
  • Sailwal M; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
  • Mishra P; Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110017, India.
  • Bhaskar T; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
  • Pandey R; Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110017, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002
  • Ghosh D; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address: dghosh@iip.res.in.
Bioresour Technol ; 384: 129379, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37352986
ABSTRACT
The study reports the exploration of the transcriptome landscape of the red oleaginous yeast Rhodotorula mucilaginosa IIPL32 coinciding with the fermentation kinetics of the yeast cultivated in a two-stage fermentation process to exploit the time-series approach to get the complete transcripts picture and reveal the persuasive genes for fatty acid and terpenoid synthesis. The finding displayed the molecular drivers with more than 2-fold upregulation in the nitrogen-limited stage than in the nitrogen-excess stage. The rate-limiting diphosphomevalonate decarboxylase, acetylCoA-citrate lyase, and acetyl-CoA C-acetyltransferase were significant in controlling the metabolic flux in the synthesis of reduced compounds, and acetoacetyl-CoA synthase, 3-ketoacyl-acyl carrier-protein reductase, and ß-subunit enoyl reductase catalyze the key starting steps of lipids or terpenoid synthesis. The last two catalyze essential reduction steps in fatty acid synthesis. These enzymes would be the prime targets for the metabolic engineering of the oleaginous yeast for enhanced fatty acids and terpenoid production.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rhodotorula Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rhodotorula Idioma: En Ano de publicação: 2023 Tipo de documento: Article