Your browser doesn't support javascript.
loading
18F­FDG PET/CT based radiomics features improve prediction of prognosis: multiple machine learning algorithms and multimodality applications for multiple myeloma.
Zhong, Haoshu; Huang, Delong; Wu, Junhao; Chen, Xiaomin; Chen, Yue; Huang, Chunlan.
Afiliação
  • Zhong H; Department of Hematology, the Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan, China.
  • Huang D; Stem Cell Laboratory, The Clinical Research Institute, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan, China.
  • Wu J; Southwest Medical University, Luzhou City, Sichuan, China.
  • Chen X; Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
  • Chen Y; Department of Hematology, the Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan, China.
  • Huang C; Stem Cell Laboratory, The Clinical Research Institute, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan, China.
BMC Med Imaging ; 23(1): 87, 2023 06 27.
Article em En | MEDLINE | ID: mdl-37370013
ABSTRACT

PURPOSE:

Multiple myeloma (MM), the second most hematological malignancy, have been studied extensively in the prognosis of the clinical parameters, however there are only a few studies have discussed the role of dual modalities and multiple algorithms of 18F-FDG (18F-fluorodeoxyglucose) PET/CT based radiomics signatures for prognosis in MM patients. We hope to deeply mine the utility of raiomics data in the prognosis of MM.

METHODS:

We extensively explored the predictive ability and clinical decision-making ability of different combination image data of PET, CT, clinical parameters and six machine learning algorithms, Cox proportional hazards model (Cox), linear gradient boosting models based on Cox's partial likelihood (GB-Cox), Cox model by likelihood based boosting (CoxBoost), generalized boosted regression modelling (GBM), random forests for survival model (RFS) and support vector regression for censored data model (SVCR). And the model evaluation methods include Harrell concordance index, time dependent receiver operating characteristic (ROC) curve, and decision curve analysis (DCA).

RESULTS:

We finally confirmed 5 PET based features, and 4 CT based features, as well as 6 clinical derived features significantly related to progression free survival (PFS) and we included them in the model construction. In various modalities combinations, RSF and GBM algorithms significantly improved the accuracy and clinical net benefit of predicting prognosis compared with other algorithms. For all combinations of various modalities based models, single-modality PET based prognostic models' performance was outperformed baseline clinical parameters based models, while the performance of models of PET and CT combined with clinical parameters was significantly improved in various algorithms.

CONCLUSION:

18F­FDG PET/CT based radiomics models implemented with machine learning algorithms can significantly improve the clinical prediction of progress and increased clinical benefits providing prospects for clinical prognostic stratification for precision treatment as well as new research areas.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fluordesoxiglucose F18 / Mieloma Múltiplo Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fluordesoxiglucose F18 / Mieloma Múltiplo Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article