Your browser doesn't support javascript.
loading
Toward Fabrication of Devices Based on Graphene/Oxide Multilayers.
Wang, Yuxuan; Guerenneur, Anais; Ramadan, Sami; Huang, Jingle; Fearn, Sarah; Nabi, Nomaan; Klein, Norbert; Alford, Neil McN; Petrov, Peter K.
Afiliação
  • Wang Y; Imperial College London, London SW7 2AZ, U.K.
  • Guerenneur A; Imperial College London, London SW7 2AZ, U.K.
  • Ramadan S; Imperial College London, London SW7 2AZ, U.K.
  • Huang J; University College London, Gower Street, London WC1E 6BT, U.K.
  • Fearn S; Imperial College London, London SW7 2AZ, U.K.
  • Nabi N; Imperial College London, London SW7 2AZ, U.K.
  • Klein N; Imperial College London, London SW7 2AZ, U.K.
  • Alford NM; Imperial College London, London SW7 2AZ, U.K.
  • Petrov PK; Imperial College London, London SW7 2AZ, U.K.
ACS Appl Electron Mater ; 5(6): 3261-3267, 2023 Jun 27.
Article em En | MEDLINE | ID: mdl-37396054
ABSTRACT
Owing to its high electrical conductivity, low density, and flexibility, graphene has great potential for use as a building block in a wide range of applications from nanoelectronics to biosensing and high-frequency devices. For many device applications, it is required to deposit dielectric materials on graphene at high temperatures and in ambient oxygen. This has been proven to be highly challenging because these conditions cause significant degradation in graphene. In this work, we investigate the degradation of graphene at elevated temperatures in an oxygen atmosphere and possible protection mechanisms to enable the growth of oxide thin films on graphene at higher temperatures. We show that coating graphene with self-assembled monolayers of hexamethyldisilazane (HMDS) prior to a high-temperature deposition can significantly reduce the damage induced. Furthermore, a graphene sample treated with HMDS displayed a weaker doping effect due to weak interaction with oxygen species than bare graphene, and a much slower rate of electrical resistance degradation was exhibited during annealing. Thus, it is a promising approach that could enable the deposition of metal oxide materials on graphene at high temperatures without significant degradation in graphene quality, which is critical for a wide range of applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article