Your browser doesn't support javascript.
loading
Operando probing and adjusting of the complicated electrode process of multivalent metals at extreme temperature.
Jiao, Handong; An, Jialiang; Jia, Yongzheng; Liu, Qiang; Wang, Zhe; Gao, Yang; Wang, Mingyong; Fang, Daining; Zhu, Hongmin; Jiao, Shuqiang.
Afiliação
  • Jiao H; Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, PR China.
  • An J; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
  • Jia Y; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
  • Liu Q; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
  • Wang Z; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
  • Gao Y; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
  • Wang M; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
  • Fang D; Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, PR China.
  • Zhu H; Tohoku University, Aobo-ku, Sendai 980-8579, Japan.
  • Jiao S; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
Proc Natl Acad Sci U S A ; 120(28): e2301780120, 2023 Jul 11.
Article em En | MEDLINE | ID: mdl-37399420
ABSTRACT
Nearly half of the elements in the periodic table are extracted, refined, or plated using electrodeposition in high-temperature melts. However, operando observations and tuning of the electrodeposition process during realistic electrolysis operations are extremely difficult due to severe reaction conditions and complicated electrolytic cell, which makes the improvement of the process very blind and inefficient. Here, we developed a multipurpose operando high-temperature electrochemical instrument that combines operando Raman microspectroscopy analysis, optical microscopy imaging, and a tunable magnetic field. Subsequently, the electrodeposition of Ti-which is a typical polyvalent metal and generally shows a very complex electrode process-was used to verify the stability of the instrument. The complex multistep cathodic process of Ti in the molten salt at 823 K was systematically analyzed by a multidimensional operando analysis strategy involving multiple experimental studies, theoretical calculations, etc. The regulatory effect and its corresponding scale-span mechanism of the magnetic field on the electrodeposition process of Ti were also elucidated, which would be inaccessible with existing experimental techniques and is significant for the real-time and rational optimization of the process. Overall, this work established a powerful and universal methodology for in-depth analysis of high-temperature electrochemistry.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article