Your browser doesn't support javascript.
loading
Equilibrium structures of selenium compounds: The torsionally flexible molecule of selenophenol.
Li, Wenqin; Saragi, Rizalina Tama; Juanes, Marcos; Demaison, Jean; Vogt, Natalja; Fernández-Ramos, Antonio; Lesarri, Alberto.
Afiliação
  • Li W; Departamento de Química Física y Química Inorgánica, Facultad de Ciencias-I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
  • Saragi RT; Departamento de Química Física y Química Inorgánica, Facultad de Ciencias-I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
  • Juanes M; Departamento de Química Física y Química Inorgánica, Facultad de Ciencias-I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
  • Demaison J; Faculty of Sciences, University of Ulm, 89069 Ulm, Germany.
  • Vogt N; Faculty of Sciences, University of Ulm, 89069 Ulm, Germany.
  • Fernández-Ramos A; Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, C/ Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
  • Lesarri A; Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain.
J Chem Phys ; 159(2)2023 Jul 14.
Article em En | MEDLINE | ID: mdl-37428062
ABSTRACT
The equilibrium structure of selenophenol has been investigated using rotational spectroscopy and high-level quantum mechanical calculations, offering electronic and structural insight into the scarcely studied selenium compounds. The jet-cooled broadband microwave spectrum was measured in the 2-8 GHz cm-wave region using broadband (chirped-pulse) fast-passage techniques. Additional measurements up to 18 GHz used narrow-band impulse excitation. Spectral signatures were obtained for six isotopic species of selenium (80Se, 78Se, 76Se, 82Se, 77Se, and 74Se), together with different monosubstituted 13C species. The (unsplit) rotational transitions associated with the non-inverting µa-dipole selection rules could be partially reproduced with a semirigid rotor model. However, the internal rotation barrier of the selenol group splits the vibrational ground state into two subtorsional levels, doubling the dipole-inverting µb transitions. The simulation of the double-minimum internal rotation gives a very low barrier height (B3PW91 42 cm-1), much smaller than for thiophenol (277 cm-1). A monodimensional Hamiltonian then predicts a huge vibrational separation of 72.2 GHz, justifying the non-observation of µb transitions in our frequency range. The experimental rotational parameters were compared with different MP2 and density functional theory calculations. The equilibrium structure was determined using several high-level ab initio calculations. A final Born-Oppenheimer (reBO) structure was obtained at the coupled-cluster CCSD(T)_ae/cc-wCVTZ level of theory, including small corrections for the wCVTZ → wCVQZ basis set enlargement calculated at the MP2 level. The mass-dependent method with predicates was used to produce an alternative rm(2) structure. The comparison between the two methods confirms the high accuracy of the reBO structure and offers information on other chalcogen-containing molecules.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article