Your browser doesn't support javascript.
loading
A Complex Reaction Network Model for Spontaneous Mirror Symmetry Breaking in Viedma Deracemizations.
Noble-Terán, María E; Cruz, José-Manuel; Cruz-Rosas, Hugo I; Buhse, Thomas; Micheau, Jean-Claude.
Afiliação
  • Noble-Terán ME; Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico.
  • Cruz JM; Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, 29050, Tuxtla Gutiérrez, Chiapas, Mexico.
  • Cruz-Rosas HI; Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico.
  • Buhse T; Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico.
  • Micheau JC; Laboratoire des IMRCP, UMR au CNRS No. 5623, Université Paul Sabatier 31062, Toulouse Cedex, France.
Chemphyschem ; 24(18): e202300318, 2023 Sep 15.
Article em En | MEDLINE | ID: mdl-37428998
ABSTRACT
Attrition-enhanced chiral symmetry breaking in crystals, known as Viedma deracemization, is a promising method for converting racemic solid phases into enantiomerically pure ones under non-equilibrium conditions. However, many aspects of this process remain unclear. In this study, we present a new investigation into Viedma deracemization using a comprehensive kinetic rate equation continuous model based on classical primary nucleation theory, crystal growth, and Ostwald ripening. Our approach employs a fully microreversible kinetic scheme with a size-dependent solubility following the Gibbs-Thomson rule. To validate our model, we use data from a real NaClO3 deracemization experiment. After parametrization, the model shows spontaneous mirror symmetry breaking (SMSB) under grinding. Additionally, we identify a bifurcation scenario with a lower and upper limit of the grinding intensity that leads to deracemization, including a minimum deracemization time within this window. Furthermore, this model uncovers that SMSB is caused by multiple instances of concealed high-order autocatalysis. Our findings provide new insights into attrition-enhanced deracemization and its potential applications in chiral molecule synthesis and understanding biological homochirality.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article