Your browser doesn't support javascript.
loading
Boosting Output Performance of Sliding Mode Triboelectric Nanogenerator by Shielding Layer and Shrouded-Tribo-Area Optimized Ternary Electrification Layered Architecture.
An, Shanshan; Fu, Shaoke; He, Wencong; Li, Gui; Xing, Pengcheng; Du, Yan; Wang, Jian; Zhou, Shiyi; Pu, Xianjie; Hu, Chenguo.
Afiliação
  • An S; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • Fu S; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • He W; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • Li G; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • Xing P; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • Du Y; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • Wang J; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • Zhou S; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • Pu X; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
  • Hu C; Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Chongqing University, Chongqing, 400044, China.
Small ; 19(45): e2303277, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37434035
ABSTRACT
Sliding mode triboelectric nanogenerator (S-TENG) is effective for low-frequency mechanical energy harvesting owing to their more efficient mechanical energy extraction capability and easy packaging. Ternary electrification layered (TEL) architecture is proven useful for improving the output performance of S-TENG. However, the bottleneck of electric output is the air breakdown on the interface of tribo-layers, which seriously restricts its further improvement. Herein, a strategy is adopted by designing a shielding layer to prevent air breakdown on the central surface of tribo-layers. And the negative effects of air breakdown on the edge of sliding layer are averted by increasing the shrouded area of tribo-layers on slider. Output charge of this shielding-layer and shrouded-tribo-area optimized ternary electrification layered triboelectric nanogenerator (SS-TEL-TENG) achieves 3.59-fold enhancement of traditional S-TENG and 1.76-fold enhancement of TEL-TENG. Furthermore, even at a very low speed of 30 rpm, output charge, current, and average power of the rotation-type SS-TEL-TENG reach 4.15 µC, 74.9 µA, and 25.4 mW (2.05 W m-2 Hz-1 ), respectively. With such high-power output, 4248 LEDs can be lighted brightly by SS-TEL-TENG directly. The high-performance SS-TEL-TENG demonstrated in this work will have great applications for powering ubiquitous sensor network in the Internet of Things (IoT).
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article