Your browser doesn't support javascript.
loading
Synergistic Metal-Nonmetal Active Sites in a Metal-Organic Cage for Efficient Photocatalytic Synthesis of Hydrogen Peroxide in Pure Water.
Lu, Jia-Ni; Liu, Jing-Jing; Dong, Long-Zhang; Lin, Jiao-Min; Yu, Fei; Liu, Jiang; Lan, Ya-Qian.
Afiliação
  • Lu JN; Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
  • Liu JJ; School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
  • Dong LZ; School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
  • Lin JM; School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
  • Yu F; Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
  • Liu J; Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
  • Lan YQ; School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
Angew Chem Int Ed Engl ; 62(36): e202308505, 2023 Sep 04.
Article em En | MEDLINE | ID: mdl-37435787
ABSTRACT
Photocatalytic synthesis of hydrogen peroxide (H2 O2 ) is a potential clean method, but the long distance between the oxidation and reduction sites in photocatalysts hinders the rapid transfer of photogenerated charges, limiting the improvement of its performance. Here, a metal-organic cage photocatalyst, Co14 (L-CH3 )24 , is constructed by directly coordinating metal sites (Co sites) used for the O2 reduction reaction (ORR) with non-metallic sites (imidazole sites of ligands) used for the H2 O oxidation reaction (WOR), which shortens the transport path of photogenerated electrons and holes, and improves the transport efficiency of charges and activity of the photocatalyst. Therefore, it can be used as an efficient photocatalyst with a rate of as high as 146.6 µmol g-1 h-1 for H2 O2 production under O2 -saturated pure water without sacrificial agents. Significantly, the combination of photocatalytic experiments and theoretical calculations proves that the functionalized modification of ligands is more conducive to adsorbing key intermediates (*OH for WOR and *HOOH for ORR), resulting in better performance. This work proposed a new catalytic strategy for the first time; i.e., to build a synergistic metal-nonmetal active site in the crystalline catalyst and use the host-guest chemistry inherent in the metal-organic cage (MOC)to increase the contact between the substrate and the catalytically active site, and finally achieve efficient photocatalytic H2 O2 synthesis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article