Your browser doesn't support javascript.
loading
d-Orbital Electron Delocalization Realized by Axial Fe4 C Atomic Clusters Delivers High-Performance Fe-N-C Catalysts for Oxygen Reduction Reaction.
Yuan, Long-Ji; Liu, Bo; Shen, Li-Xiao; Dai, Yun-Kun; Li, Qi; Liu, Chang; Gong, Wei; Sui, Xu-Lei; Wang, Zhen-Bo.
Afiliação
  • Yuan LJ; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
  • Liu B; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, P. R. China.
  • Shen LX; State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China.
  • Dai YK; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, P. R. China.
  • Li Q; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
  • Liu C; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
  • Gong W; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
  • Sui XL; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
  • Wang ZB; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
Adv Mater ; 35(39): e2305945, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37450565
ABSTRACT
Fe-N-C catalyst for oxygen reduction reaction (ORR) has been considered as the most promising nonprecious metal catalyst due to its comparable catalytic performance to Pt in proton exchange membrane fuel cells (PEMFCs). The active centers of Fe-pyrrolic N4 have been proven to be extremely active for ORR. However, forming a stable Fe-pyrrolic N4 structure is a huge challenge. Here, a Cyan-Fe-N-C catalyst with Fe-pyrrolic N4 as the intrinsic active center is constructed with the help of axial Fe4 C atomic clusters, which shows a half-wave potential of up to 0.836 V (vs. RHE) in the acid environment. More remarkably, it delivers a high power density of 870 and 478 mW cm-2 at 1.0 bar in H2 -O2 and H2 -Air fuel cells, respectively. According to theoretical calculation and in situ spectroscopy, the axial Fe4 C can provide strong electronic perturbation to Fe-N4 active centers, leading to the d-orbital electron delocalization of Fe and forming the Fe-pyrrolic N4 bond with high charge distribution, which stabilizes the Fe-pyrrolic N4 structure and optimizes the OH* adsorption during the catalytic process. This work proposes a new strategy to adjust the electronic structure of single-atom catalysts based on the strong interaction between single atoms and atomic clusters.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article