Your browser doesn't support javascript.
loading
Per- and polyfluoroalkyl substances in ambient fine particulate matter in the Pearl River Delta, China: Levels, distribution and health implications.
Liu, Lu-Sheng; Guo, Yu-Ting; Wu, Qi-Zhen; Zeeshan, Mohammed; Qin, Shuang-Jian; Zeng, Hui-Xian; Lin, Li-Zi; Chou, Wei-Chun; Yu, Yun-Jiang; Dong, Guang-Hui; Zeng, Xiao-Wen.
Afiliação
  • Liu LS; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
  • Guo YT; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
  • Wu QZ; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
  • Zeeshan M; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
  • Qin SJ; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
  • Zeng HX; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
  • Lin LZ; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
  • Chou WC; Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32608, USA.
  • Yu YJ; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
  • Dong GH; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
  • Zeng XW; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address: zxw63@mail.sysu.edu.cn.
Environ Pollut ; 334: 122138, 2023 Oct 01.
Article em En | MEDLINE | ID: mdl-37453686
Per- and polyfluoroalkyl substances (PFAS) have attracted worldwide attention as one of persistent organic pollutants; however, there is limited knowledge about the exposure concentrations of PFAS-contained ambient particulate matter and the related health risks. This study investigated the abundance and distribution of 32 PFAS in fine particulate matter (PM2.5) collected from 93 primary or secondary schools across the Pearl River Delta region (PRD), China. These chemicals comprise four PFAS categories which includes perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl acid (PFAA) precursors and PFAS alternatives. In general, concentrations of target PFAS ranged from 11.52 to 419.72 pg/m3 (median: 57.29 pg/m3) across sites. By categories, concentrations of PFSAs (median: 26.05 pg/m3) were the dominant PFAS categories, followed by PFCAs (14.25 pg/m3), PFAS alternatives (2.75 pg/m3) and PFAA precursors (1.10 pg/m3). By individual PFAS, PFOS and PFOA were the dominant PFAS, which average concentration were 24.18 pg/m3 and 6.05 pg/m3, respectively. Seasonal variation showed that the concentrations of PFCAs and PFSAs were higher in winter than in summer, whereas opposite seasonal trends were observed in PFAA precursors and PFAS alternatives. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human inhalation-based exposure risks to PFAS. Although the health risks of PFAS via inhalation were insignificant (HQ far less than one), sufficient attention should be levied to ascertain the human exposure risks through inhalation, given that exposure to PFAS through air inhalation is a long term and cumulative process.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Ácidos Alcanossulfônicos / Fluorocarbonos Limite: Humans País/Região como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Ácidos Alcanossulfônicos / Fluorocarbonos Limite: Humans País/Região como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article