Your browser doesn't support javascript.
loading
Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause.
Manoli, Giulia; Zandawala, Meet; Yoshii, Taishi; Helfrich-Förster, Charlotte.
Afiliação
  • Manoli G; Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany.
  • Zandawala M; Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany.
  • Yoshii T; Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
  • Helfrich-Förster C; Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany.
J Comp Neurol ; 531(15): 1525-1549, 2023 10.
Article em En | MEDLINE | ID: mdl-37493077
ABSTRACT
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neuropeptídeos / Proteínas de Drosophila / Relógios Circadianos / Diapausa Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neuropeptídeos / Proteínas de Drosophila / Relógios Circadianos / Diapausa Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article