Your browser doesn't support javascript.
loading
Inhibition of mitochondrial fission and protein kinase R improves progesterone in placental stress.
Kolac, Umut Kerem.
Afiliação
  • Kolac UK; Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
J Mol Endocrinol ; 71(3)2023 10 01.
Article em En | MEDLINE | ID: mdl-37522854
ABSTRACT
Placenta synthesizes hormones that play a vital role in adapting maternal physiology and supporting fetal growth. This study aimed to explore the link between progesterone, a key steroid hormone produced by placenta, and mitochondrial fission and protein kinase R through the use of chemical inhibition in trophoblasts subjected to endotoxin lipopolysaccharide and double-stranded RNA analog polyinosinicpolycytidylic acid stress. Expressions of protein kinase R, dynamin-related protein 1, mitochondrial fission protein 1, and heat shock protein 60 were determined by applying lipopolysaccharide and polyinosinicpolycytidylic acid to BeWo trophoblast cells. Next, cells were treated with protein kinase R inhibitor 2-aminopurine and mitochondrial division inhibitor 1 to examine changes in progesterone levels and expression levels of proteins and mRNAs involved in progesterone biosynthesis. Last, effect of 2-aminopurine on mitochondrial fission was determined by immunoblotting and quantitative PCR (qPCR). Mitochondrial structural changes were also examined by transmission electron microscopy. Lipopolysaccharide and polyinosinicpolycytidylic acid stimulation induced mitochondrial fission and activated protein kinase R but decreased heat shock protein 60 levels and progesterone synthesis. Chemical inhibition of mitochondrial fission elevated progesterone synthesis and protein and mRNA levels of genes involved in progesterone biosynthesis. Inhibition of protein kinase R with 2-aminopurine prevented lipopolysaccharide and polyinosinicpolycytidylic acid induced mitochondrial fission and increased progesterone biosynthesis. Use of chemical inhibitors to treat placental stress caused by pathogens has potential to stabilize the production of progesterone. The study reveals that inhibiting mitochondrial fragmentation and reducing activity of stress kinase protein kinase R in syncytiotrophoblasts leads to an increase in progesterone synthesis when exposed to lipopolysaccharide and polyinosinicpolycytidylic acid.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Placenta / Progesterona Limite: Female / Humans / Pregnancy Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Placenta / Progesterona Limite: Female / Humans / Pregnancy Idioma: En Ano de publicação: 2023 Tipo de documento: Article