Your browser doesn't support javascript.
loading
Occupational exposure to potentially toxic elements alters gene expression profiles in formal and informal Brazilian workers.
Salles, Fernanda Junqueira; Frydas, Ilias S; Papaioannou, Nafsika; Schultz, Dayna R; Luz, Maciel Santos; Rogero, Marcelo Macedo; Sarigiannis, Dimosthenis A; Olympio, Kelly Polido Kaneshiro.
Afiliação
  • Salles FJ; Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904, São Paulo, SP, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Ar
  • Frydas IS; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi
  • Papaioannou N; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi
  • Schultz DR; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi
  • Luz MS; Laboratory of Metallurgical Process, Institute for Technological Research, Sao Paulo, SP, Brazil. Electronic address: macielluz@ipt.br.
  • Rogero MM; Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of Sao Paulo, 01246-904 São Paulo, Brazil. Electronic address: mmrogero@usp.br.
  • Sarigiannis DA; Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi
  • Olympio KPK; Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904, São Paulo, SP, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Ar
Environ Res ; 236(Pt 2): 116835, 2023 Nov 01.
Article em En | MEDLINE | ID: mdl-37543127
ABSTRACT
Chemical elements, such as toxic metals, have previously demonstrated their ability to alter gene expression in humans and other species. In this study, microarray analysis was used to compare the gene expression profiles of different occupational exposure populations a) informal workers who perform soldering of jewelry inside their houses (n = 22) in São Paulo (SP) State; and b) formal workers from a steel company (n = 10) in Rio de Janeiro (RJ) state, Brazil. Control participants were recruited from the same neighborhoods without occupational chemical exposure (n = 19 in SP and n = 8 in RJ). A total of 68 blood samples were collected and RNA was extracted and hybridized using an Agilent microarray platform. Data pre-processing, statistical and pathway analysis were performed using GeneSpring software. Different expression was detected by fold-change analysis resulting in 16 up- and 33 down-regulated genes in informal workers compared to the control group. Pathway analysis revealed genes enriched in MAPK, Toll-like receptor, and NF-kappa B signaling pathways, involved in inflammatory and immune responses. In formal workers, 20 up- and 50 down-regulated genes were found related to antimicrobial peptides, defensins, neutrophil degranulation, Fc-gamma receptor-dependent phagocytosis, and pathways associated with atherosclerosis development, which is one of the main factors involved in the progression of cardiovascular diseases. The gene IFI27 was the only one commonly differentially expressed between informal and formal workers and is known to be associated with various types of cancer. In conclusion, differences in gene expression related to occupational exposure are mainly associated with inflammation and immune response. Previous research has identified a link between inflammation and immune responses and the development of chronic diseases, suggesting that prolonged occupational exposures to potentially toxic elements in Brazilian metal workers could lead to negative health outcomes. Further analysis should be carried out to investigate its direct effects and to validate causal associations.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies País/Região como assunto: America do sul / Brasil Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies País/Região como assunto: America do sul / Brasil Idioma: En Ano de publicação: 2023 Tipo de documento: Article