Your browser doesn't support javascript.
loading
Australian women's judgements about using artificial intelligence to read mammograms in breast cancer screening.
Carter, Stacy M; Carolan, Lucy; Saint James Aquino, Yves; Frazer, Helen; Rogers, Wendy A; Hall, Julie; Degeling, Chris; Braunack-Mayer, Annette; Houssami, Nehmat.
Afiliação
  • Carter SM; Australian Centre for Health Engagement, Evidence and Values (ACHEEV), School of Health & Society, University of Wollongong, Wollongong, NSW, Australia.
  • Carolan L; Australian Centre for Health Engagement, Evidence and Values (ACHEEV), School of Health & Society, University of Wollongong, Wollongong, NSW, Australia.
  • Saint James Aquino Y; Australian Centre for Health Engagement, Evidence and Values (ACHEEV), School of Health & Society, University of Wollongong, Wollongong, NSW, Australia.
  • Frazer H; St Vincent's Hospital BreastScreen, BreastScreen Victoria, Fitzroy, Victoria, Australia.
  • Rogers WA; Philosophy Department and School of Medicine, Macquarie University, Sydney, NSW, Australia.
  • Hall J; Australian Centre for Health Engagement, Evidence and Values (ACHEEV), School of Health & Society, University of Wollongong, Wollongong, NSW, Australia.
  • Degeling C; Australian Centre for Health Engagement, Evidence and Values (ACHEEV), School of Health & Society, University of Wollongong, Wollongong, NSW, Australia.
  • Braunack-Mayer A; Australian Centre for Health Engagement, Evidence and Values (ACHEEV), School of Health & Society, University of Wollongong, Wollongong, NSW, Australia.
  • Houssami N; Daffodil Centre, University of Sydney, Joint Venture with Cancer Council NSW, Sydney, NSW, Australia.
Digit Health ; 9: 20552076231191057, 2023.
Article em En | MEDLINE | ID: mdl-37559826
Objective: Mammographic screening for breast cancer is an early use case for artificial intelligence (AI) in healthcare. This is an active area of research, mostly focused on the development and evaluation of individual algorithms. A growing normative literature argues that AI systems should reflect human values, but it is unclear what this requires in specific AI implementation scenarios. Our objective was to understand women's values regarding the use of AI to read mammograms in breast cancer screening. Methods: We ran eight online discussion groups with a total of 50 women, focused on their expectations and normative judgements regarding the use of AI in breast screening. Results: Although women were positive about the potential of breast screening AI, they argued strongly that humans must remain as central actors in breast screening systems and consistently expressed high expectations of the performance of breast screening AI. Women expected clear lines of responsibility for decision-making, to be able to contest decisions, and for AI to perform equally well for all programme participants. Women often imagined both that AI might replace radiographers and that AI implementation might allow more women to be screened: screening programmes will need to communicate carefully about these issues. Conclusions: To meet women's expectations, screening programmes should delay implementation until there is strong evidence that the use of AI systems improves screening performance, should ensure that human expertise and responsibility remain central in screening programmes, and should avoid using AI in ways that exacerbate inequities.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article